263 lines
9.5 KiB
C++
263 lines
9.5 KiB
C++
#include "triton/Analysis/Allocation.h"
|
|
#include "mlir/Analysis/Liveness.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
|
|
namespace mlir {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Shared Memory Allocation Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
namespace triton {
|
|
class AllocationAnalysis {
|
|
public:
|
|
AllocationAnalysis(Operation *operation, Allocation *allocation)
|
|
: operation(operation), allocation(allocation) {
|
|
run();
|
|
}
|
|
|
|
private:
|
|
using BufferT = Allocation::BufferT;
|
|
|
|
/// Value -> Liveness Range
|
|
/// Use MapVector to ensure determinism.
|
|
using BufferRangeMapT = llvm::MapVector<BufferT *, Range<size_t>>;
|
|
/// Nodes -> Nodes
|
|
using GraphT = DenseMap<BufferT *, DenseSet<BufferT *>>;
|
|
|
|
void run() {
|
|
getValuesAndSizes();
|
|
resolveLiveness();
|
|
computeOffsets();
|
|
}
|
|
|
|
/// Initializes explicitly defined shared memory values for a given operation.
|
|
void getExplicitValueSize(Operation *op) {
|
|
for (Value result : op->getResults()) {
|
|
auto type = result.getType();
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
|
auto encoding = tensorType.getEncoding();
|
|
if (encoding && encoding.isa<triton::gpu::SharedEncodingAttr>()) {
|
|
// Bytes could be a different value once we support padding or other
|
|
// allocation policies.
|
|
auto bytes = tensorType.getNumElements() *
|
|
tensorType.getElementTypeBitWidth() / 8;
|
|
allocation->addBuffer<BufferT::BufferKind::Explicit>(result, bytes);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Initializes temporary shared memory for a given operation.
|
|
void getScratchValueSize(Operation *op) {
|
|
// TODO(Keren): Add atomic ops
|
|
// TODO(Keren): Add convert ops
|
|
if (auto reduceOp = dyn_cast<triton::ReduceOp>(op)) {
|
|
// TODO(Keren): Reduce with index is not supported yet.
|
|
auto value = op->getOperand(0);
|
|
if (auto tensorType = value.getType().dyn_cast<RankedTensorType>()) {
|
|
auto bytes = tensorType.getNumElements() *
|
|
tensorType.getElementTypeBitWidth() / 8;
|
|
allocation->addBuffer<BufferT::BufferKind::Scratch>(op, bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extract all shared memory values and their sizes
|
|
void getValuesAndSizes() {
|
|
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
|
getExplicitValueSize(op);
|
|
getScratchValueSize(op);
|
|
});
|
|
}
|
|
|
|
/// Resolves liveness of all values involved under the root operation.
|
|
void resolveLiveness() {
|
|
// In the SCF dialect, we always have a sequentially nested structure of
|
|
// blocks
|
|
DenseMap<Operation *, size_t> operationId;
|
|
operation->walk<WalkOrder::PreOrder>(
|
|
[&](Operation *op) { operationId[op] = operationId.size(); });
|
|
|
|
Liveness liveness(operation);
|
|
operation->walk<WalkOrder::PreOrder>([&](Operation *op) {
|
|
for (Value result : op->getResults()) {
|
|
auto liveOperations = liveness.resolveLiveness(result);
|
|
auto minId = std::numeric_limits<size_t>::max();
|
|
auto maxId = std::numeric_limits<size_t>::min();
|
|
std::for_each(liveOperations.begin(), liveOperations.end(),
|
|
[&](Operation *liveOp) {
|
|
if (operationId[liveOp] < minId) {
|
|
minId = operationId[liveOp];
|
|
}
|
|
if (operationId[liveOp] > maxId) {
|
|
maxId = operationId[liveOp];
|
|
}
|
|
});
|
|
if (allocation->valueBuffer.count(result)) {
|
|
auto *buffer = allocation->valueBuffer[result];
|
|
bufferRange.insert({buffer, Range(minId, maxId + 1)});
|
|
}
|
|
}
|
|
if (allocation->opScratch.count(op)) {
|
|
// Any scratch memory's live range is the current operation's live
|
|
// range.
|
|
auto *buffer = allocation->opScratch[op];
|
|
bufferRange.insert(
|
|
{buffer, Range(operationId[op], operationId[op] + 1)});
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Computes the shared memory offsets for all related values.
|
|
/// Paper: Algorithms for Compile-Time Memory Optimization
|
|
/// (https://www.cs.utexas.edu/users/harrison/papers/compile-time.pdf)
|
|
void computeOffsets() {
|
|
SmallVector<BufferT *> buffers;
|
|
for (auto bufferIter : bufferRange) {
|
|
buffers.emplace_back(bufferIter.first);
|
|
}
|
|
|
|
DenseMap<BufferT *, size_t> bufferStart;
|
|
calculateStarts(buffers, bufferStart);
|
|
|
|
GraphT interference;
|
|
buildInterferenceGraph(buffers, bufferStart, interference);
|
|
|
|
allocate(buffers, bufferStart, interference);
|
|
}
|
|
|
|
/// Computes the initial shared memory offsets.
|
|
void calculateStarts(const SmallVector<BufferT *> &buffers,
|
|
DenseMap<BufferT *, size_t> &bufferStart) {
|
|
// v = values in shared memory
|
|
// t = triplet of (size, start, end)
|
|
// shared memory space
|
|
// -
|
|
// | *******t4
|
|
// | /|\ v2 inserts t4, t5, and t6
|
|
// | |
|
|
// | ******t5 ************t6
|
|
// | ^^^^^v2^^^^^^
|
|
// | | *********************t2
|
|
// | \|/ v2 erases t1
|
|
// | ******t1 ^^^^^^^^^v1^^^^^^^^^ ************t3
|
|
// |---------------------------------------------| liveness range
|
|
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ...
|
|
/// Start -> Liveness Range
|
|
using TripleMapT = std::multimap<size_t, Range<size_t>>;
|
|
TripleMapT tripleMap;
|
|
tripleMap.insert(std::make_pair(0, Range<size_t>()));
|
|
SmallVector<BufferT *> xBuffers = buffers;
|
|
while (!xBuffers.empty()) {
|
|
auto tripleIt = tripleMap.begin();
|
|
auto size = tripleIt->first;
|
|
auto range = tripleIt->second;
|
|
tripleMap.erase(tripleIt);
|
|
auto bufferIt =
|
|
std::find_if(xBuffers.begin(), xBuffers.end(), [&](auto *buffer) {
|
|
auto xRange = bufferRange[buffer];
|
|
bool res = xRange.intersects(range);
|
|
for (auto val : tripleMap)
|
|
res = res && !val.second.intersects(xRange);
|
|
return res;
|
|
});
|
|
if (bufferIt != xBuffers.end()) {
|
|
auto buffer = *bufferIt;
|
|
auto xSize = buffer->size;
|
|
auto xRange = bufferRange.lookup(buffer);
|
|
bufferStart[buffer] = size;
|
|
tripleMap.insert(
|
|
{size + xSize, Range{std::max(range.start(), xRange.start()),
|
|
std::min(range.end(), xRange.end())}});
|
|
if (range.start() < xRange.start())
|
|
tripleMap.insert({size, Range{range.start(), xRange.end()}});
|
|
if (xRange.end() < range.end())
|
|
tripleMap.insert({size, Range{xRange.start(), range.end()}});
|
|
xBuffers.erase(bufferIt);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Builds a graph of all shared memory values. Edges are created between
|
|
/// shared memory values that are overlapping.
|
|
void buildInterferenceGraph(const SmallVector<BufferT *> &buffers,
|
|
const DenseMap<BufferT *, size_t> &bufferStart,
|
|
GraphT &interference) {
|
|
for (auto x : buffers) {
|
|
for (auto y : buffers) {
|
|
if (x == y)
|
|
continue;
|
|
auto xStart = bufferStart.lookup(x);
|
|
auto yStart = bufferStart.lookup(y);
|
|
auto xSize = x->size;
|
|
auto ySize = y->size;
|
|
Range xSizeRange = {xStart, xStart + xSize};
|
|
Range ySizeRange = {yStart, yStart + ySize};
|
|
auto xOpRange = bufferRange.lookup(x);
|
|
auto yOpRange = bufferRange.lookup(y);
|
|
if (xOpRange.intersects(yOpRange) &&
|
|
xSizeRange.intersects(ySizeRange)) {
|
|
interference[x].insert(y);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Finalizes shared memory offsets considering interference.
|
|
void allocate(const SmallVector<BufferT *> &buffers,
|
|
const DenseMap<BufferT *, size_t> &bufferStart,
|
|
const GraphT &interference) {
|
|
// First-fit graph coloring
|
|
// Neighbors are nodes that interfere with each other.
|
|
// We color a node by finding the index of the first available
|
|
// non-neighboring node or the first neighboring node without any color.
|
|
// Nodes with the same color do not interfere with each other.
|
|
DenseMap<BufferT *, int> colors;
|
|
for (auto value : buffers) {
|
|
colors[value] = (value == buffers[0]) ? 0 : -1;
|
|
}
|
|
SmallVector<bool> available(buffers.size());
|
|
for (auto x : buffers) {
|
|
std::fill(available.begin(), available.end(), true);
|
|
for (auto y : interference.lookup(x)) {
|
|
int color = colors[y];
|
|
if (color >= 0) {
|
|
available[color] = false;
|
|
}
|
|
}
|
|
auto it = std::find(available.begin(), available.end(), true);
|
|
colors[x] = std::distance(available.begin(), it);
|
|
}
|
|
// Finalize allocation
|
|
// color0: [0, 7), [0, 8), [0, 15) -> [0, 7), [0, 8), [0, 15)
|
|
// color1: [7, 9) -> [0 + 1 * 15, 9 + 1 * 15) -> [15, 24)
|
|
// color2: [8, 12) -> [8 + 2 * 15, 12 + 2 * 15) -> [38, 42)
|
|
// TODO(Keren): We are wasting memory here.
|
|
// Nodes with color2 can actually start with 24.
|
|
for (auto x : buffers) {
|
|
size_t adj = 0;
|
|
for (auto y : interference.lookup(x)) {
|
|
adj = std::max(adj, bufferStart.lookup(y) + y->size);
|
|
}
|
|
x->offset = bufferStart.lookup(x) + colors.lookup(x) * adj;
|
|
allocation->sharedMemorySize =
|
|
std::max(allocation->sharedMemorySize, x->offset + x->size);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Operation *operation;
|
|
Allocation *allocation;
|
|
BufferRangeMapT bufferRange;
|
|
};
|
|
} // namespace triton
|
|
|
|
void Allocation::run() { triton::AllocationAnalysis(getOperation(), this); }
|
|
|
|
} // namespace mlir
|