Files
triton/python/examples/batchnorm.py

56 lines
1.6 KiB
Python

import triton
import numpy as np
from enum import Enum
class MODE(Enum):
TF = 1
TORCH = 2
try:
import tensorflow as tf
mode = MODE.TF
except ModuleNotFoundError:
pass
try:
import torch
mode = MODE.TORCH
except ModuleNotFoundError:
pass
C, H, W, B = 32, 1, 1, 128
x = np.random.uniform(-1, 1, (C, H, W, B)).astype(np.float32)
gamma = np.random.uniform(-1, 1, C).astype(np.float32)
beta = np.random.uniform(-1, 1, C).astype(np.float32)
dy = np.random.uniform(-1, 1, (C, H, W, B)).astype(np.float32)
if mode == MODE.TORCH:
fw_x = torch.from_numpy(x).cuda()
fw_gamma = torch.from_numpy(gamma).cuda()
fw_beta = torch.from_numpy(beta).cuda()
fw_dy = torch.from_numpy(dy).cuda()
# register gradients
fw_x.requires_grad_(True)
fw_gamma.requires_grad_(True)
fw_beta.requires_grad_(True)
# execute
fw_y = triton.ops.batchnorm(fw_x, fw_gamma, fw_beta, 1e-4)
fw_y.backward(fw_dy)
if mode == MODE.TF:
fw_x = tf.placeholder(shape=x.shape, dtype=x.dtype)
fw_gamma = tf.placeholder(shape=gamma.shape, dtype=gamma.dtype)
fw_beta = tf.placeholder(shape=beta.shape, dtype=beta.dtype)
fw_dy = tf.placeholder(shape=dy.shape, dtype=dy.dtype)
# execute
fw_y = triton.ops.batchnorm(fw_x, fw_gamma, fw_beta, 1e-4)
fw_mean, fw_var = tf.nn.moments(fw_x, [1, 2, 3])
fw_dx, fw_dgamma, fw_dbeta = tf.gradients(fw_y, [fw_x, fw_gamma, fw_beta], fw_dy)
# run
sess = tf.InteractiveSession()
feed_dict = {fw_x: x, fw_gamma: gamma, fw_beta: beta, fw_dy: dy}
sess.run(tf.global_variables_initializer())
result = sess.run([fw_dx, fw_dgamma, fw_dbeta], feed_dict=feed_dict)
print(result)