Files
triton/python/test/unit/operators/test_matmul.py
Madeleine Thompson 8bf551ae7a [STYLE] run autopep8 and isort (#421)
Run:
```
isort ./python
autopep8 -i --ignore E501,E701,E731 $(find ./python/ -name '*.py')
```
with an `.isort.cfg` and then clean up a few warts. This PR should be a no-op; the idea is that this is all boring whitespace changes, and any config file changes will be in a different change to make it easier to review.
2022-01-06 14:34:17 -08:00

93 lines
4.6 KiB
Python

import itertools
import pytest
import torch
import triton
@pytest.mark.parametrize(
"BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE",
itertools.chain(
*[
[
# 1 warp
(16, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(16, 32, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(16, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(16, 32, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(16, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(64, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
(16, 64, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
# 2 warp
(64, 32, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE),
(64, 32, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE),
# 4 warp
(128, 64, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE),
(64, 128, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE),
# 8 warp
(128, 256, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE),
(256, 128, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE),
(256, 128, 32, 1, 8, 2, None, None, None, AT, BT, DTYPE),
# split-k
(64, 64, 16, 2, 4, 2, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 4, 4, 2, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 8, 4, 2, None, None, None, AT, BT, DTYPE),
# variable input
(128, 128, 32, 1, 4, 2, 1024, 1024, 1024, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 2, 384, 128, 640, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 2, 107, 233, 256, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 2, 107, 233, 311, AT, BT, DTYPE),
] for DTYPE in ["float16", "float32"] for AT in [False, True] for BT in [False, True]
],
# n-stage
*[
[
(16, 16, 16, 1, 1, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
(64, 32, 64, 1, 2, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
(128, 64, 16, 1, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
(256, 128, 32, 1, 8, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
(128, 128, 32, 1, 4, STAGES, 384, 128, 640, AT, BT, DTYPE),
# split-k
(64, 64, 16, 8, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
(64, 64, 16, 8, 4, STAGES, 1024, 1024, 32, AT, BT, DTYPE),
] for DTYPE in ["float16", "float32"] for AT in [False, True] for BT in [False, True] for STAGES in [2, 3, 4]
]
),
)
def test_op(BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE):
torch.manual_seed(0)
# nuke kernel decorators -- will set meta-parameters manually
kwargs = {'BLOCK_M': BLOCK_M, 'BLOCK_N': BLOCK_N, 'BLOCK_K': BLOCK_K, 'SPLIT_K': SPLIT_K}
pre_hook = None if SPLIT_K == 1 else lambda nargs: nargs['C'].zero_()
configs = [triton.Config(kwargs=kwargs, num_warps=NWARP, num_stages=NSTAGE, pre_hook=pre_hook)]
kernel = triton.ops._matmul.kernel
decorators = kernel.kernel_decorators
kernel.kernel_decorators = []
triton.autotune(configs, [])(kernel)
kernel.kernel_decorators += decorators[1:]
# get matrix shape
M = BLOCK_M if M is None else M
N = BLOCK_N if N is None else N
K = BLOCK_K * SPLIT_K if K is None else K
# allocate/transpose inputs
DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE]
a = .1 * torch.randn((K, M) if AT else (M, K), device="cuda", dtype=DTYPE)
b = .1 * torch.randn((N, K) if BT else (K, N), device="cuda", dtype=DTYPE)
a = a.t() if AT else a
b = b.t() if BT else b
# run test
th_c = torch.matmul(a, b)
tt_c = triton.testing.catch_oor(lambda: triton.ops.matmul(a, b), pytest)
triton.testing.assert_almost_equal(th_c, tt_c)