196 lines
6.5 KiB
Python
196 lines
6.5 KiB
Python
import torch
|
|
import os
|
|
|
|
try:
|
|
import triton._C.libtriton.cutlass as _cutlass
|
|
has_cutlass = True
|
|
except ImportError:
|
|
_cutlass = None
|
|
has_cutlass = False
|
|
|
|
|
|
def sparsify_tensor(x, mask, block):
|
|
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
|
|
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
|
|
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
|
|
return ret
|
|
|
|
|
|
def cutlass_matmul(a, b):
|
|
if _cutlass is None:
|
|
raise RuntimeError("Cannot find cutlass library")
|
|
M, N = a.shape[0], b.shape[1]
|
|
Ka, Kb = a.shape[1], b.shape[0]
|
|
assert Ka == Kb
|
|
assert a.dtype == b.dtype
|
|
assert a.device == b.device
|
|
# allocate output
|
|
c = torch.empty_strided((M, N), (1, M), dtype=a.dtype, device=a.device)
|
|
# run function
|
|
dtype = str(a.dtype).split('.')[-1]
|
|
_cutlass.matmul(a.data_ptr(), b.data_ptr(), c.data_ptr(), \
|
|
M, N, Ka,\
|
|
a.stride(0), a.stride(1),\
|
|
b.stride(0), b.stride(1),\
|
|
c.stride(0), c.stride(1),\
|
|
dtype, dtype, dtype,
|
|
a.device.index, torch.cuda.current_stream(a.device).cuda_stream)
|
|
|
|
return c
|
|
|
|
|
|
def mask_tensor(x, mask, block, value=0):
|
|
ret = x.clone()
|
|
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
|
|
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
|
|
return ret
|
|
|
|
|
|
def allclose(x, y, tol=1e-2):
|
|
assert x.dtype == y.dtype
|
|
diff = abs(x - y)
|
|
x_max = torch.max(x)
|
|
y_max = torch.max(y)
|
|
tol = 1e-2
|
|
err = torch.max(diff) / torch.max(x_max, y_max)
|
|
return err < tol
|
|
|
|
|
|
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.2, 0.8]):
|
|
# Estimate the runtime of the function
|
|
fn()
|
|
torch.cuda.synchronize()
|
|
start_event = torch.cuda.Event(enable_timing=True)
|
|
end_event = torch.cuda.Event(enable_timing=True)
|
|
start_event.record()
|
|
for _ in range(5):
|
|
fn()
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
estimate_ms = start_event.elapsed_time(end_event) / 5
|
|
# We maintain a buffer of 256 MB that we clear
|
|
# before each kernel call to make sure that the L2
|
|
# doesn't contain any input data before the run
|
|
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
|
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
|
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
|
# Warm-up
|
|
for _ in range(int(warmup / estimate_ms)):
|
|
fn()
|
|
# Benchmark
|
|
for i in range(rep):
|
|
# we don't want `fn` to accumulate gradient values
|
|
# if it contains a backward pass. So we clear the
|
|
# provided gradients
|
|
if grad_to_none is not None:
|
|
grad_to_none.grad = None
|
|
# we clear the L2 cache before each run
|
|
cache.zero_()
|
|
# record time of `fn`
|
|
start_event[i].record()
|
|
fn()
|
|
end_event[i].record()
|
|
torch.cuda.synchronize()
|
|
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
|
|
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
|
|
med_ms = torch.median(times).item()
|
|
if percentiles:
|
|
return tuple([med_ms] + percentiles)
|
|
else:
|
|
return med_ms
|
|
|
|
|
|
class Benchmark:
|
|
def __init__(
|
|
self,
|
|
x_names,
|
|
x_vals,
|
|
y_name,
|
|
y_vals,
|
|
y_lines,
|
|
ylabel,
|
|
plot_name,
|
|
args,
|
|
x_log=False,
|
|
y_log=False,
|
|
):
|
|
self.x_names = x_names
|
|
self.x_vals = x_vals
|
|
self.x_log = x_log
|
|
self.y_name = y_name
|
|
self.y_vals = y_vals
|
|
self.y_lines = y_lines
|
|
self.y_log = y_log
|
|
self.ylabel = ylabel
|
|
self.plot_name = plot_name
|
|
self.args = args
|
|
|
|
|
|
class Mark:
|
|
def __init__(self, fn, benchmarks):
|
|
self.fn = fn
|
|
self.benchmarks = benchmarks
|
|
|
|
def _run(self, bench, save_path, show_plots):
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import os
|
|
y_mean = bench.y_lines
|
|
y_min = [f'{x}-min' for x in bench.y_lines]
|
|
y_max = [f'{x}-max' for x in bench.y_lines]
|
|
df = pd.DataFrame(columns=[bench.x_names[0]] + y_mean + y_min + y_max)
|
|
for x in bench.x_vals:
|
|
x_args = {x_name: x for x_name in bench.x_names}
|
|
row_mean, row_min, row_max = [], [], []
|
|
for y in bench.y_vals:
|
|
ret = self.fn(**x_args, **{bench.y_name: y}, **bench.args)
|
|
try:
|
|
y_mean, y_min, y_max = ret
|
|
except TypeError:
|
|
y_mean, y_min, y_max = ret, None, None
|
|
row_mean += [y_mean]
|
|
row_min += [y_min]
|
|
row_max += [y_max]
|
|
df.loc[len(df)] = [x] + row_mean + row_min + row_max
|
|
if bench.plot_name:
|
|
plt.figure()
|
|
ax = plt.subplot()
|
|
xlabel = " = ".join(bench.x_names)
|
|
x = bench.x_names[0]
|
|
for y in bench.y_lines:
|
|
y_min, y_max = df[y + '-min'], df[y + '-max']
|
|
ax.plot(df[x], df[y], label=y)
|
|
if y_min is not None and y_max is not None:
|
|
ax.fill_between(df[x], y_min, y_max, alpha=0.5)
|
|
ax.legend()
|
|
ax.set_xlabel(xlabel)
|
|
ax.set_ylabel(bench.ylabel)
|
|
ax.set_title(bench.plot_name)
|
|
ax.set_xscale("log" if bench.x_log else "linear")
|
|
ax.set_yscale("log" if bench.y_log else "linear")
|
|
if show_plots:
|
|
plt.show()
|
|
if save_path:
|
|
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png"))
|
|
if save_path:
|
|
df = df[[bench.x_names[0]] + bench.y_lines]
|
|
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
|
|
|
|
def run(self, show_plots=False, save_path=''):
|
|
has_single_bench = isinstance(self.benchmarks, Benchmark)
|
|
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks
|
|
if save_path:
|
|
html = open(os.path.join(save_path, "results.html"), "w")
|
|
html.write("<html><body>\n")
|
|
for bench in benchmarks:
|
|
self._run(bench, save_path, show_plots)
|
|
if save_path:
|
|
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
|
|
if save_path:
|
|
html.write("</body></html>\n")
|
|
|
|
|
|
def perf_report(benchmarks):
|
|
wrapper = lambda fn: Mark(fn, benchmarks)
|
|
return wrapper
|