Files
triton/lib/dnn/shift.cpp
2019-06-28 17:04:07 -07:00

174 lines
4.8 KiB
C++

#include "triton/dnn/shift.h"
namespace triton{
namespace dnn{
void shift::set_ld(const std::vector<int32_t>& shapes,
std::vector<int32_t>& ld) {
size_t size = shapes.size();
ld.resize(size);
ld[3] = 1;
ld[2] = shapes[3]*ld[3];
ld[1] = shapes[2]*ld[2];
ld[0] = shapes[1]*ld[1];
}
shift::shift(int B, int NC,
int D, int H, int W,
int T, int R, int S,
int NF,
const std::vector<int32_t>& shift_h, const std::vector<int32_t>& shift_w,
std::string a_ty, std::string b_ty,
type ty, bool bias)
: NB_(B), NC_(NC),
AD_(D), AH_(H), AW_(W),
BD_(T), BH_(R), BW_(S),
NF_(NF),
shift_h_(shift_h), shift_w_(shift_w),
a_ty_(a_ty), b_ty_(b_ty),
ty_(ty), bias_(bias) {
// max number of channels
MAX_C_ = 1024;
// equivalent matmul
M_ = NB_*AH_*AW_;
N_ = NF_;
K_ = NC_;
// shapes
// input layout: C, H, W, BS
// filter layout: C, K
// output layout: K, H, W, BS
shapes_a_ = {NC, H, W, B};
shapes_b_ = {NC, NF};
shapes_c_ = {NF, H, W, B};
// memory strides
set_ld(shapes_a_, ld_a_);
// build LUTs
build_deltas();
}
void shift::build_deltas() {
// compute offset
auto offset = [&](unsigned c) {
return c*ld_a_[0] + shift_h_[c]*ld_a_[1] + shift_w_[c]*ld_a_[2];
};
// allocate look-up table
size_t TK = 8;
h_deltas_.resize(MAX_C_);
// populate look-up table
for(unsigned c = 0; c < TK; c++)
h_deltas_[c] = offset(c);
for(unsigned c = 0; c < NC_; c++)
h_deltas_[TK + c] = offset(c + TK) - offset(c);
}
size_t shift::a_size(){
return std::accumulate(shapes_a_.begin(), shapes_a_.end(),
1, std::multiplies<int>());
}
size_t shift::b_size(){
return std::accumulate(shapes_b_.begin(), shapes_b_.end(),
1, std::multiplies<int>());
}
size_t shift::c_size(){
return std::accumulate(shapes_c_.begin(), shapes_c_.end(),
1, std::multiplies<int>());
}
std::vector<int32_t> shift::c_shapes(){
return shapes_c_;
}
size_t shift::get_nflops() {
return 2. * M_ * N_ * K_;
}
void shift::init(driver::stream *stream, driver::cu_module *module) {
triton::driver::buffer* delta = ((triton::driver::cu_module*)module)->symbol("delta");
stream->write(delta, false, 0, h_deltas_.size()*4, h_deltas_.data());
}
void shift::enqueue(driver::stream *stream, driver::kernel *kernel,
driver::buffer *a, driver::buffer *b, driver::buffer *c,
size_t TM, size_t TN, size_t nthreads) {
kernel->setArg(0, a);
kernel->setArg(1, b);
kernel->setArg(2, c);
kernel->setArg(3, M_);
kernel->setArg(4, N_);
kernel->setArg(5, K_);
kernel->setArg(6, NB_*AH_*AW_);
kernel->setArg(7, NB_);
kernel->setArg(8, AH_);
kernel->setArg(9, AW_);
kernel->setArg(10, BH_);
kernel->setArg(11, BW_);
// dry run
std::array<size_t, 3> grid = {(M_ + TM - 1)/TM, (N_ + TN - 1)/TN, 1};
stream->enqueue(kernel, grid, {nthreads, 1, 1});
}
void shift::src(std::ostream &os) {
os <<
R"(
const tunable int32 TM = {16, 32, 64, 128};
const tunable int32 TN = {16, 32, 64, 128};
const tunable int32 TK = {8};
__constant__ int32* delta = alloc_const int32[)" << MAX_C_ << R"(];
void shift(restrict read_only align(16) )" << a_ty_ << R"( *a,
restrict read_only align(16) )" << b_ty_ << R"( *b,
fp32 *c,
int32 M, int32 N, int32 K,
int32 lda,
int32 ABS, int32 AH, int32 AW, int32 AR, int32 AS) {
int32 rxa[TM] = get_global_range[TM](0);
int32 ryb[TN] = get_global_range[TN](1);
int32 rka[TK] = 0 ... TK;
int32 rkb[TK] = 0 ... TK;
fp32 C[TM, TN] = 0;
int32 pad_h = AR/2;
int32 pad_w = AS/2;
int32 rawhc[TM] = rxa / ABS;
int32 raw[TM] = rawhc % AW;
int32 rahc[TM] = rawhc / AW;
int32 rah[TM] = rahc % AH;
int1 maskh[TM] = (rah >= pad_h) && (rah < (AH - pad_h));
int1 maskw[TM] = (raw >= pad_w) && (raw < (AW - pad_w));
int1 mask[TM, TK] = maskh[:, newaxis] && maskw[:, newaxis];
__constant__ int32* pd[TK] = delta + rka;
int32 d[TK] = *pd;
int32 offa1[TK] = rka*lda;
int32 inc[TM, TK] = mask ? d[newaxis, :] : offa1[newaxis, :];
)" << a_ty_ << R"(* pa[TM, TK] = a + rxa[:, newaxis] + inc;
)" << b_ty_ << R"(* pb[TN, TK] = b + rkb[newaxis, :]*N + ryb[:, newaxis];
)" << a_ty_ << R"( a[TM, TK] = *pa;
)" << b_ty_ << R"( b[TN, TK] = *pb;
for(int32 k = K; k > TK; k = k - TK){
C = dot(a, trans(b), C);
pb = pb + TK*N;
pd = pd + TK;
d = *pd;
inc = mask ? d[newaxis, :] : TK*lda;
pa = pa + inc;
a = *pa;
b = *pb;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 ryc[TN] = get_global_range[TN](1);
fp32* pc[TM, TN] = c + ryc[newaxis, :]*M + rxc[:, newaxis];
int1 checkc0[TM] = rxc < M;
int1 checkc1[TN] = ryc < N;
int1 checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
@checkc *pc = C;
}
)";
}
}
}