Files
triton/examples/python/pytorch/shift.cpp
2019-07-21 18:11:54 -07:00

165 lines
5.6 KiB
C++

#include <vector>
#include <torch/torch.h>
#include <torch/script.h>
#include "ATen/cuda/CUDAContext.h"
#include "triton/driver/stream.h"
#include "triton/dnn/shift.h"
#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
void extract_shapes(const torch::Tensor &x,
int64_t &C, int64_t &H, int64_t &W, int64_t &B,
triton::dnn::shift::layout_t layout) {
if(layout == triton::dnn::shift::CHWN){
C = x.size(0);
H = x.size(1);
W = x.size(2);
B = x.size(3);
}
else if(layout == triton::dnn::shift::NCHW){
B = x.size(0);
C = x.size(1);
H = x.size(2);
W = x.size(3);
}
else{
throw std::runtime_error("unsupported layout");
}
}
static const triton::dnn::shift::layout_t layout = triton::dnn::shift::NCHW;
torch::Tensor shift_common(
int32_t B, int32_t C, int32_t D, int32_t H, int32_t W,
int32_t T, int32_t R, int32_t S, int32_t F,
int32_t stride_h, int32_t stride_w,
int32_t* shift_h, int32_t* shift_w,
triton::dnn::shift::op_t ty, triton::dnn::shift::layout_t layout,
torch::Tensor torcha, torch::Tensor torchb, torch::Tensor torchbias,
bool autotune = false
) {
// Wrap CUDA handles
c10::DeviceIndex device = torcha.storage().device().index();
CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();
triton::driver::cu_stream stream(custream, false);
triton::driver::context* ctx = stream.context();
// Data-type
std::string dtype;
at::ScalarType type = torcha.scalar_type();
switch(type){
case at::ScalarType::Double: dtype = "fp64"; break;
case at::ScalarType::Float: dtype = "fp32"; break;
case at::ScalarType::Half: dtype = "fp16"; break;
default: AT_ERROR("unknown data-type for shift-conv");
}
// Get configuration
bool has_bias = torchbias.storage().size() > 0;
triton::dnn::shift shift(B, C, D, H, W, T, R, S, F,
stride_h, stride_w,
shift_h, shift_w, dtype, dtype,
ty, has_bias, layout);
// Bind memory
triton::driver::cu_buffer a(ctx, (CUdeviceptr)torcha.storage().data(), false);
triton::driver::cu_buffer b(ctx, (CUdeviceptr)torchb.storage().data(), false);
triton::driver::cu_buffer cubias(ctx, (CUdeviceptr)torchbias.storage().data(), false);
triton::driver::buffer* bias = has_bias ? &cubias : nullptr;
// Allocate output
std::vector<int32_t> _c_shapes = shift.c_shapes();
std::vector<long int> c_shapes;
for(auto x: _c_shapes)
c_shapes.push_back(x);
torch::Tensor torchc = torch::empty(c_shapes, type).cuda();
triton::driver::cu_buffer c(ctx, (CUdeviceptr)torchc.storage().data(), false);
// Enqueue
shift.enqueue(&stream, {&a, &b, &c}, true);
return torchc;
}
torch::Tensor shift_y(
const torch::Tensor x,
const torch::Tensor w,
const torch::Tensor bias,
int64_t R, int64_t S,
int64_t stride_h, int64_t stride_w,
const torch::Tensor shift_h, const torch::Tensor shift_w) {
CHECK_INPUT(x);
CHECK_INPUT(w);
// shapes for a
int64_t Ca, H, W, B;
extract_shapes(x, Ca, H, W, B, layout);
// shapes for b
int64_t Cb = w.size(0);
int64_t F = w.size(1);
AT_CHECK(Ca == Cb, "operands must have the same number of channels");
int64_t C = Ca;
// run
return shift_common(B, C, 1, H, W, 1, R, S, F, stride_h, stride_w,
(int32_t*)shift_h.storage().data(), (int32_t*)shift_w.storage().data(),
triton::dnn::shift::FPROP, layout, x, w, bias);
}
torch::Tensor shift_dx(
const torch::Tensor dy,
const torch::Tensor w,
const torch::Tensor bias,
int64_t R, int64_t S,
int64_t stride_h, int64_t stride_w,
const torch::Tensor shift_h, const torch::Tensor shift_w) {
CHECK_INPUT(dy);
CHECK_INPUT(w);
// shapes for a
int64_t Ca, H, W, B;
extract_shapes(dy, Ca, H, W, B, layout);
H *= stride_h;
W *= stride_w;
// shapes for b
int64_t Cb = w.size(0);
int64_t F = w.size(1);
std::swap(Cb, F);
// checks
AT_CHECK(Ca == Cb, "operands must have the same number of channels");
int64_t C = Ca;
std::swap(C, F);
// run
return shift_common(B, C, 1, H, W, 1, R, S, F, stride_h, stride_w,
(int32_t*)shift_h.storage().data(), (int32_t*)shift_w.storage().data(),
triton::dnn::shift::BPROP, layout, dy, w, bias);
}
torch::Tensor shift_dw(
const torch::Tensor dy,
const torch::Tensor x,
const torch::Tensor bias,
int64_t R, int64_t S,
int64_t stride_h, int64_t stride_w,
const torch::Tensor shift_h, const torch::Tensor shift_w) {
CHECK_INPUT(dy);
CHECK_INPUT(x);
// shapes for a
int64_t F, Ha, Wa, Ba;
extract_shapes(dy, F, Ha, Wa, Ba, layout);
// shapes for b
int64_t C, Hb, Wb, Bb;
extract_shapes(x, C, Hb, Wb, Bb, layout);
// check
AT_CHECK(Ha*stride_h == Hb, "operands must have the same image height");
AT_CHECK(Wa*stride_w == Wb, "operands must have the same image width");
AT_CHECK(Ba == Bb, "operands must have the same batch size");
int64_t H = Hb;
int64_t W = Wb;
int64_t B = Bb;
// run
return shift_common(B, C, 1, H, W, 1, R, S, F, stride_h, stride_w,
(int32_t*)shift_h.storage().data(), (int32_t*)shift_w.storage().data(),
triton::dnn::shift::WGRAD, layout, dy, x, bias);
}
static auto registry =
torch::jit::RegisterOperators("triton::shift_conv_y", &shift_y)
.op("triton::shift_conv_dx", &shift_dx)
.op("triton::shift_conv_dw", &shift_dw);