Files
triton/python/tutorials/01-vector-add.py
2021-07-27 12:38:49 -07:00

116 lines
4.2 KiB
Python

"""
Vector Addition
=================
In this tutorial, you will write a simple vector addition using Triton and learn about:
- The basic programming model of Triton
- The `triton.jit` decorator, which is used to define Triton kernels.
- The best practices for validating and benchmarking your custom ops against native reference implementations
"""
# %%
# Compute Kernel
# --------------------------
import torch
import triton.language as tl
import triton
@triton.jit
def _add(
X, # *Pointer* to first input vector
Y, # *Pointer* to second input vector
Z, # *Pointer* to output vector
N, # Size of the vector
**meta # Optional meta-parameters for the kernel
):
pid = tl.program_id(0)
# Create an offset for the blocks of pointers to be
# processed by this program instance
offsets = pid * meta['BLOCK'] + tl.arange(0, meta['BLOCK'])
# Create a mask to guard memory operations against
# out-of-bounds accesses
mask = offsets < N
# Load x
x = tl.load(X + offsets, mask=mask)
y = tl.load(Y + offsets, mask=mask)
# Write back x + y
z = x + y
tl.store(Z + offsets, z)
# %%
# Let's also declare a helper function that to (1) allocate the output vector
# and (2) enqueueing the above kernel.
def add(x, y):
z = torch.empty_like(x)
N = z.shape[0]
# The SPMD launch grid denotes the number of kernel instances that run in parallel.
# It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]
grid = lambda meta: (triton.cdiv(N, meta['BLOCK']), )
# NOTE:
# - each torch.tensor object is implicitly converted into a pointer to its first element.
# - `triton.jit`'ed functions can be index with a launch grid to obtain a callable GPU kernel
# - don't forget to pass meta-parameters as keywords arguments
_add[grid](x, y, z, N, BLOCK=1024)
# We return a handle to z but, since `torch.cuda.synchronize()` hasn't been called, the kernel is still
# running asynchronously at this point.
return z
# %%
# We can now use the above function to compute the element-wise sum of two `torch.tensor` objects and test its correctness:
torch.manual_seed(0)
size = 98432
x = torch.rand(size, device='cuda')
y = torch.rand(size, device='cuda')
za = x + y
zb = add(x, y)
print(za)
print(zb)
print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}')
# %%
# Seems like we're good to go!
# %%
# Benchmark
# -----------
# We can now benchmark our custom op for vectors of increasing sizes to get a sense of how it does relative to PyTorch.
# To make things easier, Triton has a set of built-in utilities that allow us to concisely plot the performance of your custom ops
# for different problem sizes.
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['size'], # argument names to use as an x-axis for the plot
x_vals=[2**i for i in range(12, 28, 1)], # different possible values for `x_name`
x_log=True, # x axis is logarithmic
line_arg='provider', # argument name whose value corresponds to a different line in the plot
line_vals=['triton', 'torch'], # possible values for `line_arg`
line_names=["Triton", "Torch"], # label name for the lines
styles=[('blue', '-'), ('green', '-')], # line styles
ylabel="GB/s", # label name for the y-axis
plot_name="vector-add-performance", # name for the plot. Used also as a file name for saving the plot.
args={} # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(size, provider):
x = torch.rand(size, device='cuda', dtype=torch.float32)
y = torch.rand(size, device='cuda', dtype=torch.float32)
if provider == 'torch':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y)
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y))
gbps = lambda ms: 12 * size / ms * 1e-6
return gbps(ms), gbps(max_ms), gbps(min_ms)
# %%
# We can now run the decorated function above. Pass `show_plots=True` to see the plots and/or
# `save_path='/path/to/results/' to save them to disk along with raw CSV data
benchmark.run(print_data=True, show_plots=True)