Files
triton/autotune/python/optimize.py
2014-09-15 23:36:01 -04:00

40 lines
1.4 KiB
Python

import array
import numpy as np
import random
import sys
import itertools
import tools
import deap.tools
from genetic import GeneticOperators
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
device = context.devices[0]
nvalid = 0
current = 0
minT = float('inf')
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
if not tools.skip(template, statement, device):
nvalid = nvalid + 1
for individual in itertools.product(*all_parameters):
template = build_template(TemplateType.Parameters(*individual))
try:
T = tools.benchmark(template,statement,device)
current = current + 1
if T < minT:
minT = T
best = individual
sys.stdout.write('%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best))
sys.stdout.flush()
except:
pass
sys.stdout.write('\n')
sys.stdout.flush()
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
GA.optimize(maxtime='5m0s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)