105 lines
4.0 KiB
C++
105 lines
4.0 KiB
C++
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
|
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::triton;
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
|
|
|
namespace {
|
|
|
|
struct SwizzlePass : public TritonGPUSwizzleBase<SwizzlePass> {
|
|
SwizzlePass() = default;
|
|
|
|
struct SwizzleInfo {
|
|
int vec;
|
|
int perPhase;
|
|
int maxPhase;
|
|
};
|
|
|
|
SwizzleInfo getSwizzleMMA(int opIdx, triton::gpu::MmaEncodingAttr retEncoding,
|
|
RankedTensorType ty) {
|
|
SwizzleInfo noSwizzling = {1, 1, 1};
|
|
int version = retEncoding.getVersion();
|
|
auto tyEncoding = ty.getEncoding().cast<triton::gpu::SharedEncodingAttr>();
|
|
auto order = tyEncoding.getOrder();
|
|
// number of rows per phase
|
|
int perPhase = 128 / (ty.getShape()[order[0]] *
|
|
(ty.getElementType().getIntOrFloatBitWidth() / 8));
|
|
perPhase = std::max<int>(perPhase, 1);
|
|
// index of the inner dimension in `order`
|
|
int inner = (opIdx == 0) ? 0 : 1;
|
|
if (version == 1) {
|
|
int maxPhase = (order[inner] == 1 ? 8 : 4) / perPhase;
|
|
// TODO: handle rep (see
|
|
// https://github.com/openai/triton/blob/master/lib/codegen/analysis/layout.cc#L209)
|
|
int vec = 1;
|
|
return SwizzleInfo{vec, perPhase, maxPhase};
|
|
} else if (version == 2) {
|
|
auto eltTy = ty.getElementType();
|
|
std::vector<size_t> mat_shape = {8, 8,
|
|
2 * 64 / eltTy.getIntOrFloatBitWidth()};
|
|
// for now, disable swizzle when using transposed int8 tensor cores
|
|
bool is_int8_mma = ty.getElementType().isInteger(8);
|
|
if (is_int8_mma && order[0] == inner)
|
|
return noSwizzling;
|
|
// compute swizzling for A operand
|
|
if (opIdx == 0) {
|
|
int vec = order[0] == 1 ? mat_shape[2] : mat_shape[0]; // k : m
|
|
int mmaStride = order[0] == 1 ? mat_shape[0] : mat_shape[2];
|
|
int maxPhase = mmaStride / perPhase;
|
|
std::cout << perPhase << " " << mat_shape[0] << " " << mat_shape[1]
|
|
<< " " << mat_shape[2] << std::endl;
|
|
return SwizzleInfo{vec, perPhase, maxPhase};
|
|
}
|
|
// compute swizzling for B operand
|
|
else if (opIdx == 1) {
|
|
int vec = order[0] == 1 ? mat_shape[1] : mat_shape[2]; // n : k
|
|
int mmaStride = order[0] == 1 ? mat_shape[2] : mat_shape[1];
|
|
int maxPhase = mmaStride / perPhase;
|
|
return SwizzleInfo{vec, perPhase, maxPhase};
|
|
} else {
|
|
llvm_unreachable("invalid operand index");
|
|
}
|
|
} else
|
|
llvm_unreachable("unsupported swizzling for provided MMA version");
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
Operation *op = getOperation();
|
|
MLIRContext *context = &getContext();
|
|
op->walk([&](triton::DotOp dotOp) -> void {
|
|
OpBuilder builder(dotOp);
|
|
auto _retEncoding =
|
|
dotOp.getResult().getType().cast<RankedTensorType>().getEncoding();
|
|
auto retEncoding = _retEncoding.dyn_cast<triton::gpu::MmaEncodingAttr>();
|
|
if (!retEncoding)
|
|
return;
|
|
for (int opIdx : {0, 1}) {
|
|
Value op = dotOp.getOperand(opIdx);
|
|
auto ty = op.getType().template cast<RankedTensorType>();
|
|
// compute new swizzled encoding
|
|
SwizzleInfo swizzle = getSwizzleMMA(opIdx, retEncoding, ty);
|
|
auto newEncoding = triton::gpu::SharedEncodingAttr::get(
|
|
&getContext(), swizzle.vec, swizzle.perPhase, swizzle.maxPhase,
|
|
ty.getEncoding()
|
|
.cast<triton::gpu::SharedEncodingAttr>()
|
|
.getOrder());
|
|
// create conversion
|
|
auto newType = RankedTensorType::get(ty.getShape(), ty.getElementType(),
|
|
newEncoding);
|
|
Operation *newOp = builder.create<triton::gpu::ConvertLayoutOp>(
|
|
op.getLoc(), newType, op);
|
|
// bind new op to dot operand
|
|
dotOp->replaceUsesOfWith(op, newOp->getResult(0));
|
|
}
|
|
});
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createTritonGPUSwizzlePass() {
|
|
return std::make_unique<SwizzlePass>();
|
|
} |