kernels before synchronizing, the kernels are now enqueued one by one. This makes it possible to clear the L2 cache before running the workload, and also potentially collect some variance data for error bars in plots
111 lines
3.7 KiB
Python
111 lines
3.7 KiB
Python
import torch
|
|
import os
|
|
|
|
|
|
def sparsify_tensor(x, mask, block):
|
|
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
|
|
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
|
|
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
|
|
return ret
|
|
|
|
|
|
def mask_tensor(x, mask, block, value=0):
|
|
ret = x.clone()
|
|
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
|
|
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
|
|
return ret
|
|
|
|
|
|
def allclose(x, y):
|
|
assert x.dtype == y.dtype
|
|
diff = abs(x - y)
|
|
x_max = torch.max(x)
|
|
y_max = torch.max(y)
|
|
tol = 1e-2
|
|
err = torch.max(diff) / torch.max(x_max, y_max)
|
|
return err < tol
|
|
|
|
|
|
def do_bench(fn, warmup=10, rep=50, grad_to_none=None, clear_l2=False):
|
|
start_event = torch.cuda.Event(enable_timing=True)
|
|
end_event = torch.cuda.Event(enable_timing=True)
|
|
# warmup to put the clock in a stable regime
|
|
ret = fn()
|
|
for i in range(warmup):
|
|
fn()
|
|
torch.cuda.synchronize()
|
|
total_ms = 0
|
|
# We maintain a buffer of 256 MB that we clear
|
|
# before each kernel call to make sure that the L2
|
|
# doesn't contain any input data before the run
|
|
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
|
for i in range(rep):
|
|
# we don't want `fn` to accumulate gradient values
|
|
# if it contains a backward pass. So we clear the
|
|
# provided gradients
|
|
if grad_to_none is not None:
|
|
grad_to_none.grad = None
|
|
# reset L2
|
|
cache.zero_()
|
|
# record time of `fn`
|
|
start_event.record()
|
|
fn()
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
total_ms += start_event.elapsed_time(end_event)
|
|
# return the average runtime of `fn`
|
|
return total_ms / rep
|
|
|
|
|
|
class Benchmark:
|
|
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
|
|
self.x_names = x_names
|
|
self.x_vals = x_vals
|
|
self.y_name = y_name
|
|
self.y_vals = y_vals
|
|
self.y_lines = y_lines
|
|
self.ylabel = ylabel
|
|
self.loglog = loglog
|
|
self.plot_name = plot_name
|
|
self.args = args
|
|
|
|
|
|
class Mark:
|
|
def __init__(self, fn, benchmarks):
|
|
self.fn = fn
|
|
self.benchmarks = benchmarks
|
|
|
|
def _run(self, bench, result_path, with_plot):
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import os
|
|
|
|
df = pd.DataFrame(columns=[bench.x_names[0]] + bench.y_lines)
|
|
for x in bench.x_vals:
|
|
x_args = {x_name: x for x_name in bench.x_names}
|
|
row = [self.fn(**x_args, **{bench.y_name: y}, **bench.args) for y in bench.y_vals]
|
|
df.loc[len(df)] = [x] + row
|
|
if with_plot and bench.plot_name:
|
|
xlabel = " = ".join(bench.x_names)
|
|
plot = df.plot(x=bench.x_names[0], y=bench.y_lines)
|
|
plot.set_xlabel(xlabel)
|
|
plot.set_ylabel(bench.ylabel)
|
|
plot.set_title(bench.plot_name)
|
|
plot.set_xscale("log" if bench.loglog else "linear")
|
|
plot.set_yscale("log" if bench.loglog else "linear")
|
|
plt.savefig(os.path.join(result_path, f"{bench.plot_name}.png"))
|
|
df.to_csv(os.path.join(result_path, f"{bench.plot_name}.csv"))
|
|
|
|
def run(self, result_path, with_plot):
|
|
with open(os.path.join(result_path, "results.html"), "w") as html:
|
|
html.write("<html><body>\n")
|
|
for bench in self.benchmarks:
|
|
self._run(bench, result_path, with_plot)
|
|
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
|
|
html.write("</body></html>\n")
|
|
|
|
|
|
def perf_report(benchmarks):
|
|
wrapper = lambda fn: Mark(fn, benchmarks)
|
|
return wrapper
|