229 lines
8.4 KiB
C++
229 lines
8.4 KiB
C++
#include "triton/Dialect/Triton/IR/Dialect.h"
|
|
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
|
#include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPU.h"
|
|
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "../PassDetail.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::triton;
|
|
|
|
namespace {
|
|
|
|
template<class Op>
|
|
class ArithBinaryPattern : public OpConversionPattern<Op> {
|
|
public:
|
|
using OpConversionPattern<Op>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(Op op, typename Op::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = this->getTypeConverter()->convertType(op.getType());
|
|
Op res = rewriter.replaceOpWithNewOp<Op>(
|
|
op, retType, adaptor.getOperands()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template<class SrcOp, class DstOp>
|
|
class ArithCmpPattern : public OpConversionPattern<SrcOp> {
|
|
public:
|
|
using OpConversionPattern<SrcOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(SrcOp op, typename SrcOp::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = this->getTypeConverter()->convertType(op.getType());
|
|
DstOp res = rewriter.replaceOpWithNewOp<DstOp>(
|
|
op, retType, adaptor.getPredicate(), adaptor.getLhs(), adaptor.getRhs()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class ConvertArithmeticOp: public ConversionPattern {
|
|
public:
|
|
ConvertArithmeticOp(TritonGPUTypeConverter &typeConverter, MLIRContext *context)
|
|
: ConversionPattern(typeConverter, MatchAnyOpTypeTag(), /*benefit=*/1,
|
|
context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation* op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter& rewriter) const override {
|
|
Dialect* dialect = op->getDialect();
|
|
if(dialect->getTypeID() != mlir::TypeID::get<arith::ArithmeticDialect>())
|
|
return failure();
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void populateArithmeticPatternsAndLegality(
|
|
TritonGPUTypeConverter& typeConverter, RewritePatternSet &patterns,
|
|
TritonGPUConversionTarget &target){
|
|
// --------------
|
|
// Add legality and rewrite pattern rules for operations
|
|
// from the Arithmetic dialect. The basic premise is that
|
|
// arithmetic operations require both inputs to have the same
|
|
// non-null encoding
|
|
// --------------
|
|
MLIRContext *context = patterns.getContext();
|
|
// // Legality rule
|
|
// target.addDynamicallyLegalDialect<arith::ArithmeticDialect>(
|
|
// // TODO: check above rule here
|
|
// [](Operation *op){
|
|
// return true;
|
|
// }
|
|
// );
|
|
// Rewrite rule
|
|
// patterns.add<ConvertArithmeticOp>(typeConverter, context);
|
|
patterns.add<ArithBinaryPattern<arith::AddIOp>,
|
|
ArithBinaryPattern<arith::SubIOp>,
|
|
ArithBinaryPattern<arith::MulIOp>,
|
|
ArithBinaryPattern<arith::DivUIOp>,
|
|
ArithBinaryPattern<arith::DivSIOp>,
|
|
ArithBinaryPattern<arith::CeilDivUIOp>,
|
|
ArithBinaryPattern<arith::CeilDivSIOp>,
|
|
ArithBinaryPattern<arith::FloorDivSIOp>,
|
|
ArithBinaryPattern<arith::RemUIOp>,
|
|
ArithBinaryPattern<arith::RemSIOp>,
|
|
ArithBinaryPattern<arith::AndIOp>,
|
|
ArithBinaryPattern<arith::OrIOp>,
|
|
ArithBinaryPattern<arith::XOrIOp>,
|
|
ArithBinaryPattern<arith::ShLIOp>,
|
|
ArithBinaryPattern<arith::ShRUIOp>,
|
|
ArithBinaryPattern<arith::ShRSIOp>, // NegFOp
|
|
// Floating point
|
|
ArithBinaryPattern<arith::AddFOp>,
|
|
ArithBinaryPattern<arith::SubFOp>,
|
|
// MaxMin
|
|
ArithBinaryPattern<arith::MaxFOp>,
|
|
ArithBinaryPattern<arith::MaxSIOp>,
|
|
ArithBinaryPattern<arith::MaxUIOp>,
|
|
ArithBinaryPattern<arith::MinFOp>,
|
|
ArithBinaryPattern<arith::MinSIOp>,
|
|
ArithBinaryPattern<arith::MinUIOp>,
|
|
// Floating point
|
|
ArithBinaryPattern<arith::MulFOp>,
|
|
ArithBinaryPattern<arith::DivFOp>,
|
|
ArithBinaryPattern<arith::RemFOp>,
|
|
// Cmp
|
|
// ArithCmpPattern<arith::CmpIOp, triton::gpu::CmpIOp>,
|
|
// ArithCmpPattern<arith::CmpFOp, triton::gpu::CmpFOp>
|
|
ArithCmpPattern<arith::CmpIOp, triton::gpu::CmpIOp>,
|
|
ArithCmpPattern<arith::CmpFOp, triton::gpu::CmpFOp>
|
|
>(typeConverter, context);
|
|
}
|
|
|
|
//
|
|
// Triton patterns
|
|
//
|
|
// TODO: Do we need to put them in anonymous namespace?
|
|
struct TritonMakeRangePattern : public OpConversionPattern<triton::MakeRangeOp> {
|
|
using OpConversionPattern<triton::MakeRangeOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(triton::MakeRangeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<triton::MakeRangeOp>(
|
|
op, retType, adaptor.start(), adaptor.end()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct TritonBroadcastPattern : public OpConversionPattern<triton::BroadcastOp> {
|
|
using OpConversionPattern<triton::BroadcastOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(triton::BroadcastOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<triton::BroadcastOp>(
|
|
op, retType, adaptor.src()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct TritonGEPPattern : public OpConversionPattern<triton::GEPOp> {
|
|
using OpConversionPattern<triton::GEPOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(triton::GEPOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<triton::GEPOp>(
|
|
op, retType, adaptor.getOperands()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct TritonLoadPattern : public OpConversionPattern<triton::LoadOp> {
|
|
using OpConversionPattern<triton::LoadOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(triton::LoadOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Type retType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<triton::LoadOp>(
|
|
op, retType,
|
|
adaptor.ptr(), adaptor.mask(), adaptor.other(),
|
|
adaptor.cache(), adaptor.evict(), adaptor.isVolatile()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct TritonStorePattern : public OpConversionPattern<triton::StoreOp> {
|
|
using OpConversionPattern<triton::StoreOp>::OpConversionPattern;
|
|
|
|
LogicalResult matchAndRewrite(triton::StoreOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<triton::StoreOp>(
|
|
op, adaptor.ptr(), adaptor.value(), adaptor.mask()
|
|
);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void populateTritonPatterns(
|
|
TritonGPUTypeConverter& typeConverter, RewritePatternSet &patterns
|
|
) {
|
|
MLIRContext *context = patterns.getContext();
|
|
patterns.add<TritonMakeRangePattern,
|
|
TritonBroadcastPattern,
|
|
TritonGEPPattern,
|
|
TritonLoadPattern,
|
|
TritonStorePattern
|
|
>(typeConverter, context);
|
|
}
|
|
|
|
|
|
class ConvertTritonToTritonGPU :
|
|
public ConvertTritonToTritonGPUBase<ConvertTritonToTritonGPU> {
|
|
|
|
public:
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ModuleOp mod = getOperation();
|
|
// int numThreads = mod.getAttr();
|
|
// type converter
|
|
TritonGPUTypeConverter typeConverter(context, /*numThreads*/128);
|
|
TritonGPUConversionTarget target(*context, typeConverter);
|
|
// rewrite patterns
|
|
RewritePatternSet patterns(context);
|
|
// add rules
|
|
populateArithmeticPatternsAndLegality(typeConverter, patterns, target);
|
|
populateTritonPatterns(typeConverter, patterns);
|
|
|
|
|
|
if(failed(applyPartialConversion(mod, target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::triton::createConvertTritonToTritonGPUPass() {
|
|
return std::make_unique<::ConvertTritonToTritonGPU>();
|
|
}
|