Files
triton/lib/Dialect/Triton/IR/Ops.cpp
2022-05-04 14:54:31 +08:00

113 lines
3.6 KiB
C++

#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/Triton/IR/Types.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OperationSupport.h"
namespace mlir {
namespace triton {
// Type inference
static Type getI1SameShape(Type type) {
auto i1Type = IntegerType::get(type.getContext(), 1);
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i1Type, tensorType.getEncoding());
return Type();
}
static Type getI32SameShape(Type type) {
auto i32Type = IntegerType::get(type.getContext(), 32);
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i32Type, tensorType.getEncoding());
return Type();
}
static Type getPointerTypeFromTensor(Type type) {
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
Type elementType = tensorType.getElementType();
auto shape = tensorType.getShape();
PointerType ptrType = PointerType::get(elementType, 1);
return RankedTensorType::get(shape, ptrType, tensorType.getEncoding());
}
return Type();
}
}
}
#define GET_OP_CLASSES
#include "triton/Dialect/Triton/IR/Ops.cpp.inc"
// enum attribute definitions
#include "triton/Dialect/Triton/IR/OpsEnums.cpp.inc"
namespace mlir {
namespace triton {
//-- StoreOp --
// Default mask
void StoreOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state, ::mlir::Value ptr, ::mlir::Value value) {
TensorType ptrType = ptr.getType().dyn_cast<TensorType>();
auto shape = ptrType.getShape();
::mlir::Value mask = builder.create<arith::ConstantOp>(
ptr.getLoc(),
RankedTensorType::get(shape, builder.getI1Type()),
DenseIntElementsAttr::get(
RankedTensorType::get(shape, builder.getI1Type()), true
)
);
state.addOperands(ptr);
state.addOperands(value);
state.addOperands(mask);
}
//-- LoadOp --
void LoadOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state, ::mlir::Value ptr,
::mlir::triton::CacheModifier cache, ::mlir::triton::EvictionPolicy evict, bool isVolatile) {
TensorType ptrType = ptr.getType().dyn_cast<TensorType>();
Type elementType = ptrType.getElementType().dyn_cast<PointerType>().getPointeeType();
auto shape = ptrType.getShape();
// mask
::mlir::Value mask = builder.create<arith::ConstantOp>(
ptr.getLoc(),
RankedTensorType::get(shape, builder.getI1Type()),
DenseIntElementsAttr::get(
RankedTensorType::get(shape, builder.getI1Type()), true
)
);
// other
Type resultType = RankedTensorType::get(shape, elementType);
::mlir::Value other = builder.create<arith::ConstantOp>(
ptr.getLoc(),
resultType,
DenseElementsAttr::get(
resultType, builder.getZeroAttr(elementType)
)
);
state.addOperands(ptr);
state.addOperands(mask);
state.addOperands(other);
state.addAttribute(cacheAttrName(state.name), ::mlir::triton::CacheModifierAttr::get(builder.getContext(), cache));
state.addAttribute(evictAttrName(state.name), ::mlir::triton::EvictionPolicyAttr::get(builder.getContext(), evict));
state.addAttribute(isVolatileAttrName(state.name), builder.getBoolAttr(isVolatile));
state.addTypes({resultType});
}
//-- DotOp --
//-- BroadcastOp --
OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
auto constOperand = src().getDefiningOp<arith::ConstantOp>();
if (!constOperand)
return {};
auto shapedType = getType().cast<ShapedType>();
return SplatElementsAttr::get(shapedType, {constOperand.getValue()});
}
} // namespace triton
} // namespace mlir