Files
triton/examples/python/tensorflow/run.py
2019-07-03 20:24:52 -07:00

98 lines
3.4 KiB
Python

import os
import tensorflow as tf
from tensorflow.python.framework import ops
import numpy as np
from time import time
data_files_path = tf.resource_loader.get_data_files_path()
library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
def run_dot():
M, N, K = 128,128,128
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
# c = tf.matmul(a, b, transpose_a=True)
c = module.dot(a, b, locks)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(N, K).astype(np.float16)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
a: ha,
b: hb})[0]
# Test
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print("dif: %f" % np.max(dif))
def run_conv():
B, C, H, W = 16, 32, 32, 32
R, S, NF = 3, 3, 32
a = tf.placeholder(tf.float32, shape=[B, C, H, W])
b = tf.placeholder(tf.float32, shape=[C, R, S, NF])
c = module.conv2d(a, b)
# Reference
ha = np.random.rand(B, C, H, W)
hb = np.random.rand(C, R, S, NF)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
@ops.RegisterGradient('ShiftConv')
def blocksparse_matmul_grad(op, dy):
shift_h = op.get_attr('shift_h')
shift_w = op.get_attr('shift_w')
x = op.inputs[0]
w = op.inputs[1]
dx = module.shift_conv_dx(dy, w, shift_h=shift_h, shift_w=shift_w)
dw = module.shift_conv_dw(dy, x, shift_h=shift_h, shift_w=shift_w)
return (dx, dw)
def run_shift():
B, C, H, W = 1, 16, 4, 4
R, S, F = 3, 3, 16
np.random.seed(2)
a = tf.placeholder(tf.float32, shape=[C, H, W, B])
b = tf.placeholder(tf.float32, shape=[C, F])
hshift_h = np.random.randint(- (R//2), R//2 + 1, size=C, dtype=np.int32)
hshift_w = np.random.randint(- (S//2), R//2 + 1, size=C, dtype=np.int32)
print(hshift_h)
print(hshift_w)
#hshift_h = np.ones(C, dtype=np.int32)
#hshift_w = np.ones(C, dtype=np.int32)
c = module.shift_conv(a, b, shift_h=tf.make_tensor_proto(hshift_h), shift_w=tf.make_tensor_proto(hshift_w))
# Reference
ha = np.random.rand(C, H, W, B)
hb = np.random.rand(C, F)
#ha = np.ones((C, H, W, B), dtype=np.int32)
#hb = np.ones((C, F), dtype=np.int32)
sess = tf.InteractiveSession()
grads = tf.test.compute_gradient([a, b], [(C, H, W, B), (C, F)], c, (C, H, W, B),
extra_feed_dict={a: ha, b: hb})
dx_t, dx_n = grads[0]
dw_t, dw_n = grads[1]
print(dw_t)
print(dw_n)
print(np.max(dw_t - dw_n))
#np.savetxt('diff.dat', dw_t - dw_n, fmt='%2.4f')
#np.savetxt('theoretical.dat', dw_t, fmt='%2.4f')
#np.savetxt('numerical.dat', dw_n, fmt='%2.4f')
print(np.max(dx_t - dx_n))
#np.savetxt('diff.dat', dx_t - dx_n, fmt='%2.4f')
#np.savetxt('theoretical.dat', dx_t, fmt='%2.4f')
#np.savetxt('numerical.dat', dx_n, fmt='%2.4f')
# Run
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
#print(result)
run_shift()