Files
triton/master/getting-started/tutorials/01-vector-add.html
2022-09-06 00:50:44 +00:00

423 lines
29 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Vector Addition &mdash; Triton documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Fused Softmax" href="02-fused-softmax.html" />
<link rel="prev" title="Tutorials" href="index.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Tutorials</a><ul class="current">
<li class="toctree-l2 current"><a class="current reference internal" href="#">Vector Addition</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#compute-kernel">Compute Kernel</a></li>
<li class="toctree-l3"><a class="reference internal" href="#benchmark">Benchmark</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="02-fused-softmax.html">Fused Softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="03-matrix-multiplication.html">Matrix Multiplication</a></li>
<li class="toctree-l2"><a class="reference internal" href="04-low-memory-dropout.html">Low-Memory Dropout</a></li>
<li class="toctree-l2"><a class="reference internal" href="05-layer-norm.html">Layer Normalization</a></li>
<li class="toctree-l2"><a class="reference internal" href="06-fused-attention.html">Fused Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="07-libdevice-function.html">Libdevice function</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.html">triton</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.language.html">triton.language</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.testing.html">triton.testing</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Programming Guide</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-1/introduction.html">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-2/related-work.html">Related Work</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Tutorials</a> &raquo;</li>
<li>Vector Addition</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/getting-started/tutorials/01-vector-add.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">here</span></a>
to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="vector-addition">
<span id="sphx-glr-getting-started-tutorials-01-vector-add-py"></span><h1>Vector Addition<a class="headerlink" href="#vector-addition" title="Permalink to this headline"></a></h1>
<p>In this tutorial, you will write a simple vector addition using Triton and learn about:</p>
<ul class="simple">
<li><p>The basic programming model of Triton</p></li>
<li><p>The <cite>triton.jit</cite> decorator, which is used to define Triton kernels.</p></li>
<li><p>The best practices for validating and benchmarking your custom ops against native reference implementations</p></li>
</ul>
<div class="section" id="compute-kernel">
<h2>Compute Kernel<a class="headerlink" href="#compute-kernel" title="Permalink to this headline"></a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton</span>
<span class="kn">import</span> <span class="nn">triton.language</span> <span class="k">as</span> <span class="nn">tl</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">add_kernel</span><span class="p">(</span>
<span class="n">x_ptr</span><span class="p">,</span> <span class="c1"># *Pointer* to first input vector</span>
<span class="n">y_ptr</span><span class="p">,</span> <span class="c1"># *Pointer* to second input vector</span>
<span class="n">output_ptr</span><span class="p">,</span> <span class="c1"># *Pointer* to output vector</span>
<span class="n">n_elements</span><span class="p">,</span> <span class="c1"># Size of the vector</span>
<span class="n">BLOCK_SIZE</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">,</span> <span class="c1"># Number of elements each program should process</span>
<span class="c1"># NOTE: `constexpr` so it can be used as a shape value</span>
<span class="p">):</span>
<span class="c1"># There are multiple &#39;program&#39;s processing different data. We identify which program</span>
<span class="c1"># we are here</span>
<span class="n">pid</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># We use a 1D launch grid so axis is 0</span>
<span class="c1"># This program will process inputs that are offset from the initial data.</span>
<span class="c1"># for instance, if you had a vector of length 256 and block_size of 64, the programs</span>
<span class="c1"># would each access the elements [0:64, 64:128, 128:192, 192:256].</span>
<span class="c1"># Note that offsets is a list of pointers</span>
<span class="n">block_start</span> <span class="o">=</span> <span class="n">pid</span> <span class="o">*</span> <span class="n">BLOCK_SIZE</span>
<span class="n">offsets</span> <span class="o">=</span> <span class="n">block_start</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE</span><span class="p">)</span>
<span class="c1"># Create a mask to guard memory operations against out-of-bounds accesses</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">offsets</span> <span class="o">&lt;</span> <span class="n">n_elements</span>
<span class="c1"># Load x and y from DRAM, masking out any extra elements in case the input is not a</span>
<span class="c1"># multiple of the block size</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">x_ptr</span> <span class="o">+</span> <span class="n">offsets</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">y_ptr</span> <span class="o">+</span> <span class="n">offsets</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="c1"># Write x + y back to DRAM</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">output_ptr</span> <span class="o">+</span> <span class="n">offsets</span><span class="p">,</span> <span class="n">output</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
</pre></div>
</div>
<p>Lets also declare a helper function to (1) allocate the <cite>z</cite> tensor
and (2) enqueue the above kernel with appropriate grid/block sizes.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">add</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">y</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="c1"># We need to preallocate the output</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">x</span><span class="o">.</span><span class="n">is_cuda</span> <span class="ow">and</span> <span class="n">y</span><span class="o">.</span><span class="n">is_cuda</span> <span class="ow">and</span> <span class="n">output</span><span class="o">.</span><span class="n">is_cuda</span>
<span class="n">n_elements</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span>
<span class="c1"># The SPMD launch grid denotes the number of kernel instances that run in parallel.</span>
<span class="c1"># It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -&gt; Tuple[int]</span>
<span class="c1"># In this case, we use a 1D grid where the size is the number of blocks</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">meta</span><span class="p">:</span> <span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">cdiv</span><span class="p">(</span><span class="n">n_elements</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE&#39;</span><span class="p">]),)</span>
<span class="c1"># NOTE:</span>
<span class="c1"># - each torch.tensor object is implicitly converted into a pointer to its first element.</span>
<span class="c1"># - `triton.jit`&#39;ed functions can be index with a launch grid to obtain a callable GPU kernel</span>
<span class="c1"># - don&#39;t forget to pass meta-parameters as keywords arguments</span>
<span class="n">add_kernel</span><span class="p">[</span><span class="n">grid</span><span class="p">](</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">output</span><span class="p">,</span> <span class="n">n_elements</span><span class="p">,</span> <span class="n">BLOCK_SIZE</span><span class="o">=</span><span class="mi">1024</span><span class="p">)</span>
<span class="c1"># We return a handle to z but, since `torch.cuda.synchronize()` hasn&#39;t been called, the kernel is still</span>
<span class="c1"># running asynchronously at this point.</span>
<span class="k">return</span> <span class="n">output</span>
</pre></div>
</div>
<p>We can now use the above function to compute the element-wise sum of two <cite>torch.tensor</cite> objects and test its correctness:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">size</span> <span class="o">=</span> <span class="mi">98432</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">size</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">size</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">output_torch</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span>
<span class="n">output_triton</span> <span class="o">=</span> <span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output_torch</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output_triton</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span>
<span class="sa">f</span><span class="s1">&#39;The maximum difference between torch and triton is &#39;</span>
<span class="sa">f</span><span class="s1">&#39;</span><span class="si">{</span><span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">output_torch</span> <span class="o">-</span> <span class="n">output_triton</span><span class="p">))</span><span class="si">}</span><span class="s1">&#39;</span>
<span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>tensor([1.3713, 1.3076, 0.4940, ..., 0.6724, 1.2141, 0.9733], device=&#39;cuda:0&#39;)
tensor([1.3713, 1.3076, 0.4940, ..., 0.6724, 1.2141, 0.9733], device=&#39;cuda:0&#39;)
The maximum difference between torch and triton is 0.0
</pre></div>
</div>
<p>Seems like were good to go!</p>
</div>
<div class="section" id="benchmark">
<h2>Benchmark<a class="headerlink" href="#benchmark" title="Permalink to this headline"></a></h2>
<p>We can now benchmark our custom op on vectors of increasing sizes to get a sense of how it does relative to PyTorch.
To make things easier, Triton has a set of built-in utilities that allow us to concisely plot the performance of your custom ops
for different problem sizes.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;size&#39;</span><span class="p">],</span> <span class="c1"># argument names to use as an x-axis for the plot</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span>
<span class="mi">2</span> <span class="o">**</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">28</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="p">],</span> <span class="c1"># different possible values for `x_name`</span>
<span class="n">x_log</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="c1"># x axis is logarithmic</span>
<span class="n">line_arg</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span> <span class="c1"># argument name whose value corresponds to a different line in the plot</span>
<span class="n">line_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;torch&#39;</span><span class="p">],</span> <span class="c1"># possible values for `line_arg`</span>
<span class="n">line_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;Triton&#39;</span><span class="p">,</span> <span class="s1">&#39;Torch&#39;</span><span class="p">],</span> <span class="c1"># label name for the lines</span>
<span class="n">styles</span><span class="o">=</span><span class="p">[(</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;green&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)],</span> <span class="c1"># line styles</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s1">&#39;GB/s&#39;</span><span class="p">,</span> <span class="c1"># label name for the y-axis</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s1">&#39;vector-add-performance&#39;</span><span class="p">,</span> <span class="c1"># name for the plot. Used also as a file name for saving the plot.</span>
<span class="n">args</span><span class="o">=</span><span class="p">{},</span> <span class="c1"># values for function arguments not in `x_names` and `y_name`</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">benchmark</span><span class="p">(</span><span class="n">size</span><span class="p">,</span> <span class="n">provider</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">size</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">size</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">))</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">12</span> <span class="o">*</span> <span class="n">size</span> <span class="o">/</span> <span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-6</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
</pre></div>
</div>
<p>We can now run the decorated function above. Pass <cite>print_data=True</cite> to see the performance number, <cite>show_plots=True</cite> to plot them, and/or
<a href="#id1"><span class="problematic" id="id2">`</span></a>save_path=/path/to/results/ to save them to disk along with raw CSV data</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">benchmark</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">show_plots</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<img alt="01 vector add" class="sphx-glr-single-img" src="../../_images/sphx_glr_01-vector-add_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 15.999999 15.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.974 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/f191ee1e78dc52eb5f7cba88f71cef2f/01-vector-add.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">01-vector-add.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="02-fused-softmax.html" class="btn btn-neutral float-right" title="Fused Softmax" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="index.html" class="btn btn-neutral float-left" title="Tutorials" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" data-toggle="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<span class="fa fa-book"> Other Versions</span>
v: master
<span class="fa fa-caret-down"></span>
</span>
<div class="rst-other-versions">
<dl>
<dt>Tags</dt>
<dd><a href="../../../v1.1.2/index.html">v1.1.2</a></dd>
</dl>
<dl>
<dt>Branches</dt>
<dd><a href="01-vector-add.html">master</a></dd>
</dl>
</div>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>