Files
triton/python/triton/language/random.py
Philippe Tillet ccf9abe0ba [FRONTEND][RANDOM] Improved backward compatibility of RNG (#438)
The unsigned int PR definitely improved our RNG. However, it requires
different floating point arithmetics which, means the results are not
bit-wise identical to how they were before. This commit revives backward
compatibility, but we should change it back to the "right" way later.
2022-01-21 18:05:55 -08:00

173 lines
5.3 KiB
Python

import triton
from . import core as tl
PHILOX_KEY_A: tl.constexpr = -1640531527 # 0x9E3779B9
PHILOX_KEY_B: tl.constexpr = -1150833019 # 0xBB67AE85
PHILOX_ROUND_A: tl.constexpr = -766435501 # 0xD2511F53
PHILOX_ROUND_B: tl.constexpr = -845247145 # 0xCD9E8D57
N_ROUNDS_DEFAULT = 10 # Default number of rounds for philox
# -------------------
# randint
# -------------------
@triton.jit
def philox_impl(c0, c1, c2, c3, k0, k1, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Run `n_rounds` rounds of Philox for state (c0, c1, c2, c3) and key (k0, k1).
"""
for _ in range(n_rounds):
# update random state
A = PHILOX_ROUND_A
B = PHILOX_ROUND_B
_c0, _c2 = c0, c2
c0 = tl.umulhi(B, _c2) ^ c1 ^ k0
c2 = tl.umulhi(A, _c0) ^ c3 ^ k1
c1 = B * _c2
c3 = A * _c0
# raise key
k0 = k0 + PHILOX_KEY_A
k1 = k1 + PHILOX_KEY_B
return c0, c1, c2, c3
@triton.jit
def philox(seed, c0, c1, c2, c3, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
seed = seed.to(tl.uint64)
seed_hi = ((seed >> 32) & 0xffffffff).to(tl.uint32)
seed_lo = (seed & 0xffffffff).to(tl.uint32)
return philox_impl(c0, c1, c2, c3, seed_lo, seed_hi, n_rounds)
@triton.jit
def randint(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns a single
block of random :code:`int32`.
If you need multiple streams of random numbers,
using `randint4x` is likely to be faster than calling `randint` 4 times.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
ret, _, _, _ = randint4x(seed, offset, n_rounds)
return ret
@triton.jit
def randint4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns four
blocks of random :code:`int32`.
This is the maximally efficient entry point
to Triton's Philox pseudo-random number generator.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
# _0 = tl.zeros(offset.shape, offset.dtype)
_0 = offset * 0
return philox(seed, offset, _0, _0, _0, n_rounds)
# -------------------
# rand
# -------------------
# @triton.jit
# def uint32_to_uniform_float(x):
# """
# Numerically stable function to convert a random uint32 into a random float uniformly sampled in [0, 1).
# """
# two_to_the_minus_32: tl.constexpr = 2.328306e-10
# return x * two_to_the_minus_32
@triton.jit
def uint32_to_uniform_float(x):
"""
Numerically stable function to convert a random uint32 into a random float uniformly sampled in [0, 1).
"""
x = x.to(tl.int32, bitcast=True)
max = 4.656613e-10 # = 1/MAX_INT = 1/2147483647.
x = tl.where(x < 0, -x - 1, x)
return x * max
@triton.jit
def rand(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`U(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
offset = offset.to(tl.uint32, bitcast=True)
source = randint(seed, offset, n_rounds)
return uint32_to_uniform_float(source)
@triton.jit
def rand4x(seed, offsets, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offsets` block,
returns a 4 blocks of random :code:`float32` in :math:`U(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
offsets = offsets.to(tl.uint32, bitcast=True)
i1, i2, i3, i4 = randint4x(seed, offsets, n_rounds)
u1 = uint32_to_uniform_float(i1)
u2 = uint32_to_uniform_float(i2)
u3 = uint32_to_uniform_float(i3)
u4 = uint32_to_uniform_float(i4)
return u1, u2, u3, u4
# -------------------
# randn
# -------------------
@triton.jit
def pair_uniform_to_normal(u1, u2):
"""Box-Muller transform"""
u1 = tl.maximum(1.0e-7, u1)
th = 6.283185307179586 * u2
r = tl.sqrt(-2.0 * tl.log(u1))
return r * tl.cos(th), r * tl.sin(th)
@triton.jit
def randn(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`\\mathcal{N}(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
i1, i2, _, _ = randint4x(seed, offset, n_rounds)
u1 = uint32_to_uniform_float(i1)
u2 = uint32_to_uniform_float(i2)
n1, _ = pair_uniform_to_normal(u1, u2)
return n1
@triton.jit
def randn4x(seed, offset, n_rounds: tl.constexpr = N_ROUNDS_DEFAULT):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a 4 blocks of random :code:`float32` in :math:`\\mathcal{N}(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
u1, u2, u3, u4 = rand4x(seed, offset, n_rounds)
n1, n2 = pair_uniform_to_normal(u1, u2)
n3, n4 = pair_uniform_to_normal(u3, u4)
return n1, n2, n3, n4