Files
triton/python/autotune/pysrc/genetic.py
2015-01-31 22:01:48 -05:00

201 lines
9.1 KiB
Python

import random, time, sys, copy
import misc_tools
import numpy as np
import pyatidlas as atd
from deap import algorithms
from deap import base
from deap import creator
from deap import tools as deap_tools
from collections import OrderedDict as odict
def closest_divisor(N, x):
x_low=x_high=max(1,min(round(x),N))
while N % x_low > 0 and x_low>0:
x_low = x_low - 1
while N % x_high > 0 and x_high < N:
x_high = x_high + 1
return x_low if x - x_low < x_high - x else x_high
def b_gray_to_bin(A='00000000', endian='big'):
assert type(endian) is str
assert endian == 'little' or endian == 'big'
if endian == 'little': A = A[::-1] # Make sure endianness is big before conversion
b = A[0]
for i in range(1, len(A)): b += str( int(b[i-1] != A[i]) )
if endian == 'little': b = b[::-1] # Convert back to little endian if necessary
return b
class GeneticOperators(object):
def __init__(self, symbolic, Template, out):
self.device = symbolic.context.queues[0].device
self.symbolic = symbolic
self.Template = Template
self.cache = {}
self.out = out
self.genome_info = {
atd.vaxpy: [3,4,4,atd.fetching_policy_type],
atd.reduction: [3,4,4,atd.fetching_policy_type],
atd.maxpy: [3,3,3,3,3,atd.fetching_policy_type],
atd.mreduction_rows: [3,3,3,4,atd.fetching_policy_type],
atd.mreduction_cols: [3,3,3,4,atd.fetching_policy_type],
atd.mproduct_nn: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
atd.mproduct_nt: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
atd.mproduct_tn: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3],
atd.mproduct_tt: [3,3,3,3,3,3,3,atd.fetching_policy_type,atd.fetching_policy_type,3]
}[Template]
self.indpb = 1.0/sum([1 if x==atd.fetching_policy_type else x for x in self.genome_info])
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
self.toolbox = base.Toolbox()
self.toolbox.register("population", self.init)
self.toolbox.register("evaluate", self.evaluate)
self.toolbox.register("mate", deap_tools.cxTwoPoint)
self.toolbox.register("mutate", self.mutate)
self.toolbox.register("select", deap_tools.selNSGA2)
def decode(self, genome):
fetching_policy_type = atd.fetching_policy_type
fetch = [fetching_policy_type.FETCH_FROM_LOCAL, fetching_policy_type.FETCH_FROM_GLOBAL_STRIDED, fetching_policy_type.FETCH_FROM_GLOBAL_CONTIGUOUS]
decode_element = lambda x:2**int(b_gray_to_bin(''.join(x)), 2)
result = []
offset = 0
for x in self.genome_info:
if x==atd.fetching_policy_type:
result.append(fetch[genome[offset]])
offset = offset + 1
else:
result.append(decode_element(genome[offset:offset+x]))
offset = offset + x
#GEMM peculiarities
if self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt]:
if fetching_policy_type.FETCH_FROM_LOCAL in result:
lf1 = result[1]*result[3]/result[9]
else:
result[9] = 0
lf1 = 0
result.append(lf1)
return result
def init(self, N):
result = []
allowed_idx = [0,1,2] if self.Template in [atd.mproduct_nn, atd.mproduct_nt, atd.mproduct_tn, atd.mproduct_tt] else [1,2]
for idx in allowed_idx:
current = []
while len(current) < N/len(allowed_idx):
while True:
bincode = []
for i, x in enumerate(self.genome_info):
if x==atd.fetching_policy_type:
bincode = bincode + [idx]
else:
bincode = bincode + [str(random.randint(0,1)) for i in range(x)]
parameters = self.decode(bincode)
template = self.Template(*parameters)
array_expressions = atd.array_expression_container(self.symbolic)
registers_usage = template.registers_usage(array_expressions)/4
lmem_usage = template.lmem_usage(array_expressions)
local_size = parameters[1]*parameters[3]
occupancy_record = misc_tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
if not misc_tools.skip(template, self.symbolic):
current.append(creator.Individual(bincode))
break
result = result + current
return result
def mutate(self, individual):
while True:
new_individual = copy.deepcopy(individual)
for i in range(len(new_individual)):
if isinstance(individual[i], int) and random.random() < self.indpb:
while new_individual[i] == individual[i]:
new_individual[i] = random.randint(0, 2)
elif not isinstance(individual[i], int) and random.random() < self.indpb:
new_individual[i] = '1' if new_individual[i]=='0' else '0'
parameters = self.decode(new_individual)
template = self.Template(*parameters)
#print tools.skip(template, self.symbolic), parameters
if not misc_tools.skip(template, self.symbolic):
break
return new_individual,
def evaluate(self, individual):
if tuple(individual) not in self.cache:
parameters = self.decode(individual)
template = self.Template(*parameters)
try:
tt = misc_tools.benchmark(template, self.symbolic)
self.out.write(','.join([str(tt)]+map(str,map(int,parameters)))+'\n')
self.cache[tuple(individual)] = tt
except ValueError:
self.cache[tuple(individual)] = 10
return self.cache[tuple(individual)],
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
hof = deap_tools.HallOfFame(1)
# Begin the generational process
gen = 0
maxtime = time.strptime(maxtime, '%Mm%Ss')
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
start_time = time.time()
mu = 30
cxpb = 0.2
mutpb = 0.7
population = self.init(mu)
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
hof.update(population)
while time.time() - start_time < maxtime and gen < maxgen:
# Vary the population
offspring = []
for _ in xrange(mu):
op_choice = random.random()
if op_choice < cxpb: # Apply crossover
while True:
ind1, ind2 = map(self.toolbox.clone, random.sample(population, 2))
ind1, ind2 = self.toolbox.mate(ind1, ind2)
del ind1.fitness.values
parameters = self.decode(ind1)
template = self.Template(*parameters)
if not misc_tools.skip(template, self.symbolic):
break
offspring.append(ind1)
elif op_choice < cxpb + mutpb: # Apply mutation
ind = self.toolbox.clone(random.choice(population))
ind, = self.toolbox.mutate(ind)
del ind.fitness.values
offspring.append(ind)
else: # Apply reproduction
offspring.append(random.choice(population))
#for x in offspring:
#print self.decode(x)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Update the hall of fame with the generated individuals
hof.update(offspring)
# Select the next generation population
population[:] = self.toolbox.select(population + offspring, mu)
#Update
gen = gen + 1
best_profile = '(%s)'%','.join(map(str,self.decode(hof[0])))
best_performance = compute_perf(hof[0].fitness.values[0])
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\r'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
sys.stdout.flush()
sys.stdout.write('\n')
return self.decode(hof[0])