Files
triton/lib/driver/device.cpp
2019-02-24 14:35:16 -05:00

198 lines
5.4 KiB
C++
Executable File

/* Copyright 2015-2017 Philippe Tillet
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <map>
#include <algorithm>
#include <sstream>
#include <cstring>
#include <memory>
#include "triton/driver/device.h"
namespace triton
{
namespace driver
{
/* Architecture [NVidia] */
Device::Architecture Device::nv_arch(std::pair<unsigned int, unsigned int> sm) const{
switch(sm.first)
{
case 7:
switch(sm.second)
{
case 0: return Architecture::SM_7_0;
}
case 6:
switch(sm.second)
{
case 0: return Architecture::SM_6_0;
case 1: return Architecture::SM_6_1;
}
case 5:
switch(sm.second)
{
case 0: return Architecture::SM_5_0;
case 2: return Architecture::SM_5_2;
default: return Architecture::UNKNOWN;
}
case 3:
switch(sm.second)
{
case 0: return Architecture::SM_3_0;
case 5: return Architecture::SM_3_5;
case 7: return Architecture::SM_3_7;
default: return Architecture::UNKNOWN;
}
case 2:
switch(sm.second)
{
case 0: return Architecture::SM_2_0;
case 1: return Architecture::SM_2_1;
default: return Architecture::UNKNOWN;
}
default: return Architecture::UNKNOWN;
}
}
template<CUdevice_attribute attr>
int Device::cuGetInfo() const{
int res;
dispatch::cuDeviceGetAttribute(&res, attr, *cu_);
return res;
}
nvmlDevice_t Device::nvml_device() const{
std::map<std::string, nvmlDevice_t> map;
std::string key = pci_bus_id();
if(map.find(key)==map.end()){
nvmlDevice_t device;
dispatch::nvmlDeviceGetHandleByPciBusId_v2(key.c_str(), &device);
return map.insert(std::make_pair(key, device)).first->second;
}
return map.at(key);
}
/* Architecture */
Device::Architecture Device::architecture() const
{ return nv_arch(compute_capability()); }
/* Attributes */
size_t Device::address_bits() const
{ return sizeof(size_t)*8; }
driver::Platform Device::platform() const
{ return Platform(); }
std::string Device::name() const{
char tmp[128];
dispatch::cuDeviceGetName(tmp, 128, *cu_);
return std::string(tmp);
}
std::string Device::pci_bus_id() const{
char tmp[128];
dispatch::cuDeviceGetPCIBusId(tmp, 128, *cu_);
return std::string(tmp);
}
void Device::interpret_as(std::pair<size_t, size_t> cc){
interpreted_as_ = std::make_shared<std::pair<size_t, size_t>>(cc);
}
std::pair<size_t, size_t> Device::compute_capability() const{
if(interpreted_as_)
return *interpreted_as_;
size_t _major = cuGetInfo<CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR>();
size_t _minor = cuGetInfo<CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR>();
return std::make_pair(_major, _minor);
}
size_t Device::max_threads_per_block() const
{ return cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK>(); }
size_t Device::max_shared_memory() const
{ return cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK>(); }
size_t Device::warp_size() const
{ return cuGetInfo<CU_DEVICE_ATTRIBUTE_WARP_SIZE>(); }
std::vector<size_t> Device::max_block_dim() const{
std::vector<size_t> result(3);
result[0] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X>();
result[1] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y>();
result[2] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z>();
return result;
}
size_t Device::current_sm_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetClockInfo(nvml_device(), NVML_CLOCK_SM, &result);
return result;
}
size_t Device::max_sm_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetMaxClockInfo(nvml_device(), NVML_CLOCK_SM, &result);
return result;
}
size_t Device::current_mem_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetClockInfo(nvml_device(), NVML_CLOCK_MEM, &result);
return result;
}
size_t Device::max_mem_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetMaxClockInfo(nvml_device(), NVML_CLOCK_MEM, &result);
return result;
}
/* Infos */
std::string Device::infos() const{
std::ostringstream oss;
std::vector<size_t> max_wi_sizes = max_block_dim();
oss << "Platform: " << platform().name() << std::endl;
oss << "Name: " << name() << std::endl;
oss << "Maximum total work-group size: " << max_threads_per_block() << std::endl;
oss << "Maximum individual work-group sizes: " << max_wi_sizes[0] << ", " << max_wi_sizes[1] << ", " << max_wi_sizes[2] << std::endl;
oss << "Local memory size: " << max_shared_memory() << std::endl;
return oss.str();
}
Handle<CUdevice> const & Device::cu() const
{ return cu_; }
}
}