Files
triton/python/tests/test_matmul.py
2021-07-27 12:38:48 -07:00

151 lines
7.8 KiB
Python

import pytest
import itertools
import triton as tt
import torch as th
@pytest.mark.parametrize("TM, TN, TK, TZ, NWARP, M, N, K, AT, BT, DTYPE", itertools.chain(*[
[
# 1 warp
(16, 16, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(32, 16, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 32, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 16, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(32, 16, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 32, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(64, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 64, 64, 1, 1, None, None, None, AT, BT, DTYPE),
# 2 warp
(64, 32, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(64, 32, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 2, None, None, None, AT, BT, DTYPE),
# 4 warp
(128, 64, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(64, 128, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 4, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 4, None, None, None, AT, BT, DTYPE),
(128, 32, 64, 1, 4, None, None, None, AT, BT, DTYPE),
(32, 128, 64, 1, 4, None, None, None, AT, BT, DTYPE),
# 8 warp
(128, 256, 16, 1, 8, None, None, None, AT, BT, DTYPE),
(256, 128, 16, 1, 8, None, None, None, AT, BT, DTYPE),
(256, 128, 32, 1, 8, None, None, None, AT, BT, DTYPE),
# split-k
(64, 64, 16, 2, 4, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 4, 4, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 8, 4, None, None, None, AT, BT, DTYPE),
# variable input
(128, 128, 32, 1, 4, 256, 256, 256 , AT, BT, DTYPE),
(128, 128, 32, 1, 4, 384, 128, 640 , AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 256 , AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 311 , AT, BT, DTYPE)
]
for DTYPE in ['float16']
for AT in [False, True]
for BT in [False, True]
]))
def test_op(TM, TN, TK, TZ, NWARP, M, N, K, AT, BT, DTYPE):
DTYPE = {'float16': th.float16, 'float32': th.float32}[DTYPE]
th.manual_seed(0)
tt.ops._matmul._kernels = dict()
tt.ops._matmul._CONFIGS = [({'TM': str(TM) , 'TN': str(TN) , 'TK': str(TK), 'TZ': str(TZ)}, NWARP)]
if M is None: M = TM
if N is None: N = TN
if K is None: K = TK*TZ
a = th.randn((K, M) if AT else (M, K), device='cuda', dtype=DTYPE) / K**.5
b = th.randn((N, K) if BT else (K, N), device='cuda', dtype=DTYPE) / K**.5
a = a.t() if AT else a
b = b.t() if BT else b
th_c = th.matmul(a, b)
tt_c = tt.ops.matmul(a, b)
rtol, atol = {th.float32: (1e-4, 1e-5),
th.float16: (1e-2, 1e-3)}[DTYPE]
assert th.allclose(tt_c, th_c, atol=atol, rtol=rtol)
def do_bench(fn, flops = 0, warmup = 10, rep = 50):
start_event = th.cuda.Event(enable_timing=True)
end_event = th.cuda.Event(enable_timing=True)
ret = fn()
for i in range(warmup):
fn()
th.cuda.synchronize()
start_event.record()
for i in range(rep):
fn()
end_event.record()
th.cuda.synchronize()
time_ms = start_event.elapsed_time(end_event) / rep
return time_ms
def time_all(fn, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog=True, plot_name='', **kwargs):
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame(columns = [x_names[0]] + y_lines)
for x in x_vals:
x_args = {x_name: x for x_name in x_names}
row = [fn(**x_args, **{y_name: y}, **kwargs) for y in y_vals]
df.loc[len(df)] = [x] + row
print(df)
if plot_name:
df.plot(x=x_names[0], y=y_lines, ylabel=ylabel, xlabel=' = '.join(x_names), title=f'{plot_name}', loglog=loglog)
plt.savefig(f'{plot_name}.pdf')
def perf_op(M, N, K, AT, BT, dtype, provider, warmup=10, rep=50):
import os
a = th.randn((K, M) if AT else (M, K), device='cuda', dtype=dtype) / K**.5
b = th.randn((N, K) if BT else (K, N), device='cuda', dtype=dtype) / K**.5
if AT: a = a.t()
if BT: b = b.t()
num_flops = 2*M*N*K
if provider == 'torch':
torch_ms = do_bench(lambda: th.matmul(a, b), warmup = warmup, rep = rep)
torch_tflops = num_flops / torch_ms * 1e-9
return torch_tflops
if provider == 'triton':
triton_ms = do_bench(lambda: tt.ops.matmul(a, b), warmup = warmup, rep = rep)
triton_tflops = num_flops / triton_ms * 1e-9
return triton_tflops
if provider == 'cutlass' and 'CUTLASS_PROFILER' in os.environ:
import subprocess
import tempfile
import pandas as pd
# run program specified by CUTLASS_PROFILER env variable
layout_a = 'column' if AT else 'row'
layout_b = 'column' if BT else 'row'
# create temporary file name
fd, fname = tempfile.mkstemp()
# run program and gets its output
cmd = [os.environ['CUTLASS_PROFILER'], f'--m={M}', f'--n={N}', f'--k={K}', f'--A=f16:{layout_a}', f'--B=f16:{layout_b}', \
'--C=f16:column', '--accum=f32', '--operation=gemm', '--verification-enabled=false', '--warmup-iterations=10', \
'--profiling-iterations=50', f'--output={fname}', '--verbose=false']
# run cmd
subprocess.run(cmd, stdout=subprocess.PIPE)
# read CSV output
df_c = pd.read_csv(f'{fname}.gemm.csv')
cutlass_tflops = max(df_c['GFLOPs'])/1e3
return cutlass_tflops
return None
if __name__ == '__main__':
# # square
x_square = [128, 256, 512, 1024, 2048, 3072, 4096, 6144]
time_all(perf_op, x_names = ['M', 'N', 'K'], x_vals = x_square, y_name = 'provider' , y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = False, BT = False, dtype = th.float16, loglog=False, plot_name = 'matmul-square-nn')
time_all(perf_op, x_names = ['M', 'N', 'K'], x_vals = x_square, y_name = 'provider' , y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = False, BT = True, dtype = th.float16, loglog=False, plot_name = 'matmul-square-nt')
time_all(perf_op, x_names = ['M', 'N', 'K'], x_vals = x_square, y_name = 'provider' , y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = True, BT = False, dtype = th.float16, loglog=False, plot_name = 'matmul-square-tn')
time_all(perf_op, x_names = ['M', 'N', 'K'], x_vals = x_square, y_name = 'provider' , y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = True, BT = True, dtype = th.float16, loglog=False, plot_name = 'matmul-square-tt')
# tall-skinny
x_tall_skinny = [64, 96, 128, 160, 192, 256, 320, 384, 512, 768, 1024, 1536]
time_all(perf_op, x_names = ['M'], x_vals = x_tall_skinny, y_name = 'provider', y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = False, BT = False, N=2048, K=2048, dtype = th.float16, loglog=False, plot_name = 'matmul-tall-skinny-2k-2k')
time_all(perf_op, x_names = ['M'], x_vals = x_tall_skinny, y_name = 'provider', y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = False, BT = False, N=4096, K=4096, dtype = th.float16, loglog=False, plot_name = 'matmul-tall-skinny-4k-4k')
time_all(perf_op, x_names = ['M'], x_vals = x_tall_skinny, y_name = 'provider', y_vals = ['torch', 'triton', 'cutlass'],
ylabel = 'TFLOPS', y_lines = ['Torch', 'Triton', 'CUTLASS'], AT = False, BT = False, N=6144, K=6144, dtype = th.float16, loglog=False, plot_name = 'matmul-tall-skinny-6k-6k')