Before this commit, the benchmarking infrastructure used heterogeneous protocols between library (e.g., CUTLASS uses a C++ binary that reports mean TFLOPS; torch and triton use python call and report 10th, 50th and 90th quantiles). For the sake of uniformity and fair benchmark practices, this PR adds a python wrapper for auto-tuned CUTLASS matrix multiplication. Benchmarks have been rewritten to use this wrapper with `triton.testing.do_bench` rather than system calls to CUTLASS profiler. Importantly, this also ensures that all the matmuls are done on the *same* input data which should stabilize clock across providers.
144 lines
5.1 KiB
Python
144 lines
5.1 KiB
Python
import torch
|
|
import os
|
|
|
|
try:
|
|
import triton._C.libtriton.cutlass as _cutlass
|
|
except ImportError:
|
|
_cutlass = None
|
|
|
|
|
|
def sparsify_tensor(x, mask, block):
|
|
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
|
|
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
|
|
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
|
|
return ret
|
|
|
|
|
|
def cutlass_matmul(a, b):
|
|
if _cutlass is None:
|
|
raise RuntimeError("Cannot find cutlass library")
|
|
M, N = a.shape[0], b.shape[1]
|
|
c = torch.empty_strided((M, N), (1, M), dtype=a.dtype, device=a.device)
|
|
_cutlass.matmul(a, b, c)
|
|
return c
|
|
|
|
|
|
def mask_tensor(x, mask, block, value=0):
|
|
ret = x.clone()
|
|
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
|
|
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
|
|
return ret
|
|
|
|
|
|
def allclose(x, y):
|
|
assert x.dtype == y.dtype
|
|
diff = abs(x - y)
|
|
x_max = torch.max(x)
|
|
y_max = torch.max(y)
|
|
tol = 1e-2
|
|
err = torch.max(diff) / torch.max(x_max, y_max)
|
|
return err < tol
|
|
|
|
|
|
def do_bench(fn, warmup=10, rep=50, grad_to_none=None):
|
|
# We maintain a buffer of 256 MB that we clear
|
|
# before each kernel call to make sure that the L2
|
|
# doesn't contain any input data before the run
|
|
start_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
|
end_event = [torch.cuda.Event(enable_timing=True) for i in range(rep)]
|
|
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
|
|
for i in range(warmup + rep):
|
|
# we don't want `fn` to accumulate gradient values
|
|
# if it contains a backward pass. So we clear the
|
|
# provided gradients
|
|
if grad_to_none is not None:
|
|
grad_to_none.grad = None
|
|
# we clear the L2 cache before each run
|
|
cache.zero_()
|
|
# record time of `fn`
|
|
if i >= warmup:
|
|
start_event[i - warmup].record()
|
|
fn()
|
|
if i >= warmup:
|
|
end_event[i - warmup].record()
|
|
torch.cuda.synchronize()
|
|
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
|
|
q = torch.quantile(times, torch.tensor([0.1, 0.5, 0.9]))
|
|
min_ms = q[0].item()
|
|
mean_ms = q[1].item()
|
|
max_ms = q[2].item()
|
|
return mean_ms, min_ms, max_ms
|
|
|
|
|
|
class Benchmark:
|
|
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
|
|
self.x_names = x_names
|
|
self.x_vals = x_vals
|
|
self.y_name = y_name
|
|
self.y_vals = y_vals
|
|
self.y_lines = y_lines
|
|
self.ylabel = ylabel
|
|
self.loglog = loglog
|
|
self.plot_name = plot_name
|
|
self.args = args
|
|
|
|
|
|
class Mark:
|
|
def __init__(self, fn, benchmarks):
|
|
self.fn = fn
|
|
self.benchmarks = benchmarks
|
|
|
|
def _run(self, bench, result_path, with_plot):
|
|
import matplotlib.pyplot as plt
|
|
import pandas as pd
|
|
import os
|
|
y_mean = bench.y_lines
|
|
y_min = [f'{x}-min' for x in bench.y_lines]
|
|
y_max = [f'{x}-max' for x in bench.y_lines]
|
|
df = pd.DataFrame(columns=[bench.x_names[0]] + y_mean + y_min + y_max)
|
|
for x in bench.x_vals:
|
|
x_args = {x_name: x for x_name in bench.x_names}
|
|
row_mean, row_min, row_max = [], [], []
|
|
for y in bench.y_vals:
|
|
ret = self.fn(**x_args, **{bench.y_name: y}, **bench.args)
|
|
try:
|
|
y_mean, y_min, y_max = ret
|
|
except TypeError:
|
|
y_mean, y_min, y_max = ret, None, None
|
|
row_mean += [y_mean]
|
|
row_min += [y_min]
|
|
row_max += [y_max]
|
|
df.loc[len(df)] = [x] + row_mean + row_min + row_max
|
|
if with_plot and bench.plot_name:
|
|
plt.figure()
|
|
ax = plt.subplot()
|
|
xlabel = " = ".join(bench.x_names)
|
|
x = bench.x_names[0]
|
|
for y in bench.y_lines:
|
|
y_min, y_max = df[y + '-min'], df[y + '-max']
|
|
ax.plot(df[x], df[y], label=y)
|
|
if y_min is not None and y_max is not None:
|
|
ax.fill_between(df[x], y_min, y_max, alpha=0.5)
|
|
ax.legend()
|
|
ax.set_xlabel(xlabel)
|
|
ax.set_ylabel(bench.ylabel)
|
|
ax.set_title(bench.plot_name)
|
|
ax.set_xscale("log" if bench.loglog else "linear")
|
|
ax.set_yscale("log" if bench.loglog else "linear")
|
|
plt.savefig(os.path.join(result_path, f"{bench.plot_name}.png"))
|
|
df = df[[bench.x_names[0]] + bench.y_lines]
|
|
df.to_csv(os.path.join(result_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
|
|
|
|
def run(self, result_path, with_plot):
|
|
with open(os.path.join(result_path, "results.html"), "w") as html:
|
|
html.write("<html><body>\n")
|
|
for bench in self.benchmarks:
|
|
self._run(bench, result_path, with_plot)
|
|
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
|
|
html.write("</body></html>\n")
|
|
|
|
|
|
def perf_report(benchmarks):
|
|
wrapper = lambda fn: Mark(fn, benchmarks)
|
|
return wrapper
|