140 lines
7.5 KiB
Plaintext
140 lines
7.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n# Vector Addition\nIn this tutorial, you will write a simple vector addition using Triton and learn about:\n\n- The basic programming model of Triton\n- The `triton.jit` decorator, which is used to define Triton kernels.\n- The best practices for validating and benchmarking your custom ops against native reference implementations\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Compute Kernel\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import torch\n\nimport triton\nimport triton.language as tl\n\n\n@triton.jit\ndef add_kernel(\n x_ptr, # *Pointer* to first input vector\n y_ptr, # *Pointer* to second input vector\n output_ptr, # *Pointer* to output vector\n n_elements, # Size of the vector\n BLOCK_SIZE: tl.constexpr, # Number of elements each program should process\n # NOTE: `constexpr` so it can be used as a shape value\n):\n # There are multiple 'program's processing different data. We identify which program\n # we are here\n pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0\n # This program will process inputs that are offset from the initial data.\n # for instance, if you had a vector of length 256 and block_size of 64, the programs\n # would each access the elements [0:64, 64:128, 128:192, 192:256].\n # Note that offsets is a list of pointers\n block_start = pid * BLOCK_SIZE\n offsets = block_start + tl.arange(0, BLOCK_SIZE)\n # Create a mask to guard memory operations against out-of-bounds accesses\n mask = offsets < n_elements\n # Load x and y from DRAM, masking out any extra elements in case the input is not a\n # multiple of the block size\n x = tl.load(x_ptr + offsets, mask=mask)\n y = tl.load(y_ptr + offsets, mask=mask)\n output = x + y\n # Write x + y back to DRAM\n tl.store(output_ptr + offsets, output, mask=mask)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's also declare a helper function to (1) allocate the `z` tensor\nand (2) enqueue the above kernel with appropriate grid/block sizes.\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"def add(x: torch.Tensor, y: torch.Tensor):\n # We need to preallocate the output\n output = torch.empty_like(x)\n assert x.is_cuda and y.is_cuda and output.is_cuda\n n_elements = output.numel()\n # The SPMD launch grid denotes the number of kernel instances that run in parallel.\n # It is analogous to CUDA launch grids. It can be either Tuple[int], or Callable(metaparameters) -> Tuple[int]\n # In this case, we use a 1D grid where the size is the number of blocks\n grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)\n # NOTE:\n # - each torch.tensor object is implicitly converted into a pointer to its first element.\n # - `triton.jit`'ed functions can be index with a launch grid to obtain a callable GPU kernel\n # - don't forget to pass meta-parameters as keywords arguments\n add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=1024)\n # We return a handle to z but, since `torch.cuda.synchronize()` hasn't been called, the kernel is still\n # running asynchronously at this point.\n return output"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now use the above function to compute the element-wise sum of two `torch.tensor` objects and test its correctness:\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"torch.manual_seed(0)\nsize = 98432\nx = torch.rand(size, device='cuda')\ny = torch.rand(size, device='cuda')\noutput_torch = x + y\noutput_triton = add(x, y)\nprint(output_torch)\nprint(output_triton)\nprint(\n f'The maximum difference between torch and triton is '\n f'{torch.max(torch.abs(output_torch - output_triton))}'\n)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Seems like we're good to go!\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Benchmark\nWe can now benchmark our custom op on vectors of increasing sizes to get a sense of how it does relative to PyTorch.\nTo make things easier, Triton has a set of built-in utilities that allow us to concisely plot the performance of your custom ops\nfor different problem sizes.\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"@triton.testing.perf_report(\n triton.testing.Benchmark(\n x_names=['size'], # argument names to use as an x-axis for the plot\n x_vals=[\n 2 ** i for i in range(12, 28, 1)\n ], # different possible values for `x_name`\n x_log=True, # x axis is logarithmic\n line_arg='provider', # argument name whose value corresponds to a different line in the plot\n line_vals=['triton', 'torch'], # possible values for `line_arg`\n line_names=['Triton', 'Torch'], # label name for the lines\n styles=[('blue', '-'), ('green', '-')], # line styles\n ylabel='GB/s', # label name for the y-axis\n plot_name='vector-add-performance', # name for the plot. Used also as a file name for saving the plot.\n args={}, # values for function arguments not in `x_names` and `y_name`\n )\n)\ndef benchmark(size, provider):\n x = torch.rand(size, device='cuda', dtype=torch.float32)\n y = torch.rand(size, device='cuda', dtype=torch.float32)\n if provider == 'torch':\n ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y)\n if provider == 'triton':\n ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y))\n gbps = lambda ms: 12 * size / ms * 1e-6\n return gbps(ms), gbps(max_ms), gbps(min_ms)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now run the decorated function above. Pass `print_data=True` to see the performance number, `show_plots=True` to plot them, and/or\n`save_path='/path/to/results/' to save them to disk along with raw CSV data\n\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"benchmark.run(print_data=True, show_plots=True)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
} |