Files
triton/master/getting-started/tutorials/05-layer-norm.html
2022-05-06 00:44:25 +00:00

567 lines
70 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Layer Normalization &mdash; Triton documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="triton" href="../../python-api/triton.html" />
<link rel="prev" title="Low-Memory Dropout" href="04-low-memory-dropout.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Tutorials</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="01-vector-add.html">Vector Addition</a></li>
<li class="toctree-l2"><a class="reference internal" href="02-fused-softmax.html">Fused Softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="03-matrix-multiplication.html">Matrix Multiplication</a></li>
<li class="toctree-l2"><a class="reference internal" href="04-low-memory-dropout.html">Low-Memory Dropout</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Layer Normalization</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.html">triton</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.language.html">triton.language</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.testing.html">triton.testing</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Programming Guide</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-1/introduction.html">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-2/related-work.html">Related Work</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Tutorials</a> &raquo;</li>
<li>Layer Normalization</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/getting-started/tutorials/05-layer-norm.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">here</span></a>
to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="layer-normalization">
<span id="sphx-glr-getting-started-tutorials-05-layer-norm-py"></span><h1>Layer Normalization<a class="headerlink" href="#layer-normalization" title="Permalink to this headline"></a></h1>
<img alt="05 layer norm" class="sphx-glr-single-img" src="../../_images/sphx_glr_05-layer-norm_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 361.411758 97.912354 303.407414
1 1536.0 409.599994 134.540150 341.333333
2 2048.0 491.520012 161.154101 323.368435
3 2560.0 461.954908 181.238943 326.808501
4 3072.0 515.580429 192.501302 320.556515
5 3584.0 554.941930 208.271186 311.652167
6 4096.0 561.737163 220.907859 294.323343
7 4608.0 502.690905 232.825259 291.799469
8 5120.0 525.128191 242.366855 289.129408
9 5632.0 540.671974 243.107920 288.820505
10 6144.0 546.133354 248.661056 286.322318
11 6656.0 527.207907 256.000009 285.257135
12 7168.0 503.017523 260.063480 285.293536
13 7680.0 483.779539 262.938666 275.928134
14 8192.0 463.698115 266.767970 284.526763
15 8704.0 413.655443 267.472468 284.987724
16 9216.0 427.822068 271.724806 288.375482
17 9728.0 436.396262 280.615388 289.667485
18 10240.0 446.025405 286.433562 290.153487
19 10752.0 428.651173 246.935876 290.267711
20 11264.0 426.397479 245.536784 286.980888
21 11776.0 420.571432 249.667843 288.981596
22 12288.0 416.542386 254.673582 294.617366
23 12800.0 410.695192 253.884294 288.180121
24 13312.0 409.075539 252.959629 290.443638
25 13824.0 404.604870 257.390218 292.056329
26 14336.0 394.116833 254.862216 286.959121
27 14848.0 385.662341 257.852379 289.952797
28 15360.0 380.433442 257.970599 286.433562
29 15872.0 370.192407 261.626369 290.562936
</pre></div>
</div>
<div class="line-block">
<div class="line"><br /></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton</span>
<span class="kn">import</span> <span class="nn">triton.language</span> <span class="k">as</span> <span class="nn">tl</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it</span>
<span class="c1"># should not be added to extras_require in setup.py.</span>
<span class="kn">import</span> <span class="nn">apex</span>
<span class="n">HAS_APEX</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">except</span> <span class="ne">ModuleNotFoundError</span><span class="p">:</span>
<span class="n">HAS_APEX</span> <span class="o">=</span> <span class="kc">False</span>
<span class="c1"># Forward Pass</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_fwd_fused</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">Y</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">):</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">Y</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># load data and cast to float32</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="c1"># compute mean</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="c1"># compute std</span>
<span class="n">xmean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xmean</span> <span class="o">*</span> <span class="n">xmean</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">tl</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">xmean</span> <span class="o">*</span> <span class="n">rstd</span>
<span class="c1"># write-back mean/rstd</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">mean</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="c1"># multiply by weight and add bias</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">B</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">xhat</span> <span class="o">*</span> <span class="n">w</span> <span class="o">+</span> <span class="n">b</span>
<span class="c1"># write-back</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">Y</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># Backward pass (DX + partial DW + partial DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dx_fused</span><span class="p">(</span><span class="n">DX</span><span class="p">,</span> <span class="n">DY</span><span class="p">,</span> <span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">Lock</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="n">GROUP_SIZE_M</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">):</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DY</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DX</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># offset locks and weight/bias gradient pointer</span>
<span class="c1"># each kernel instance accumulates partial sums for</span>
<span class="c1"># DW and DB into one of GROUP_SIZE_M independent buffers</span>
<span class="c1"># these buffers stay in the L2, which allow this kernel</span>
<span class="c1"># to be fast</span>
<span class="n">lock_id</span> <span class="o">=</span> <span class="n">row</span> <span class="o">%</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">Lock</span> <span class="o">+=</span> <span class="n">lock_id</span>
<span class="n">Count</span> <span class="o">=</span> <span class="n">Lock</span> <span class="o">+</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">DW</span> <span class="o">=</span> <span class="n">DW</span> <span class="o">+</span> <span class="n">lock_id</span> <span class="o">*</span> <span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="n">DB</span> <span class="o">=</span> <span class="n">DB</span> <span class="o">+</span> <span class="n">lock_id</span> <span class="o">*</span> <span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="c1"># load data to SRAM</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DY</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="c1"># compute dx</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span> <span class="o">*</span> <span class="n">rstd</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">dy</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">xhat</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">wdy</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">mean1</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xhat</span> <span class="o">*</span> <span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">mean2</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">dx</span> <span class="o">=</span> <span class="p">(</span><span class="n">wdy</span> <span class="o">-</span> <span class="p">(</span><span class="n">xhat</span> <span class="o">*</span> <span class="n">mean1</span> <span class="o">+</span> <span class="n">mean2</span><span class="p">))</span> <span class="o">*</span> <span class="n">rstd</span>
<span class="c1"># write-back dx</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DX</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">dx</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># accumulate partial sums for dw/db</span>
<span class="n">partial_dw</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span> <span class="o">*</span> <span class="n">xhat</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">while</span> <span class="n">tl</span><span class="o">.</span><span class="n">atomic_cas</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">pass</span>
<span class="n">count</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">Count</span><span class="p">)</span>
<span class="c1"># first store doesn&#39;t accumulate</span>
<span class="k">if</span> <span class="n">count</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Count</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">partial_dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">partial_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">partial_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># release lock</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># Backward pass (total DW + total DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dwdb</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">FINAL_DW</span><span class="p">,</span> <span class="n">FINAL_DB</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_M</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">:</span> <span class="n">tl</span><span class="o">.</span><span class="n">constexpr</span><span class="p">):</span>
<span class="n">pid</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">pid</span> <span class="o">*</span> <span class="n">BLOCK_SIZE_N</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_M</span><span class="p">):</span>
<span class="n">rows</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_M</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="p">(</span><span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">M</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
<span class="n">offs</span> <span class="o">=</span> <span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="n">N</span> <span class="o">+</span> <span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span>
<span class="n">dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">sum_dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dw</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">sum_db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">db</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DW</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DB</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">LayerNorm</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">):</span>
<span class="c1"># allocate output</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># reshape input data into 2D tensor</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="c1"># Less than 64KB per feature: enqueue fused kernel</span>
<span class="n">MAX_FUSED_SIZE</span> <span class="o">=</span> <span class="mi">65536</span> <span class="o">//</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span>
<span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">MAX_FUSED_SIZE</span><span class="p">,</span> <span class="n">triton</span><span class="o">.</span><span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">))</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&gt;</span> <span class="n">BLOCK_SIZE</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;This layer norm doesn&#39;t support feature dim &gt;= 64KB.&quot;</span><span class="p">)</span>
<span class="c1"># heuristics for number of warps</span>
<span class="n">num_warps</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">BLOCK_SIZE</span> <span class="o">//</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">8</span><span class="p">)</span>
<span class="c1"># enqueue kernel</span>
<span class="n">_layer_norm_fwd_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">x_arg</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE</span><span class="o">=</span><span class="n">BLOCK_SIZE</span><span class="p">,</span> <span class="n">num_warps</span><span class="o">=</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="n">BLOCK_SIZE</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span> <span class="o">=</span> <span class="n">num_warps</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
<span class="k">return</span> <span class="n">y</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">dy</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="c1"># heuristics for amount of parallel reduction stream for DG/DB</span>
<span class="n">N</span> <span class="o">=</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">64</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">8192</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">96</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">4096</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">128</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">1024</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">256</span>
<span class="c1"># allocate output</span>
<span class="n">locks</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">_dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">_db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">dy</span><span class="p">)</span>
<span class="c1"># enqueue kernel using forward pass heuristics</span>
<span class="c1"># also compute partial sums for DW and DB</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">_layer_norm_bwd_dx_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">dx</span><span class="p">,</span> <span class="n">dy</span><span class="p">,</span> <span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">locks</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span><span class="p">,</span>
<span class="n">GROUP_SIZE_M</span><span class="o">=</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span>
<span class="n">num_warps</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">meta</span><span class="p">:</span> <span class="p">[</span><span class="n">triton</span><span class="o">.</span><span class="n">cdiv</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">])]</span>
<span class="c1"># accumulate partial sums in separate kernel</span>
<span class="n">_layer_norm_bwd_dwdb</span><span class="p">[</span><span class="n">grid</span><span class="p">](</span><span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_M</span><span class="o">=</span><span class="mi">32</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
<span class="k">return</span> <span class="n">dx</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">layer_norm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="o">.</span><span class="n">apply</span>
<span class="k">def</span> <span class="nf">test_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># backward pass (triton)</span>
<span class="n">y_tri</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_tri</span><span class="p">,</span> <span class="n">dw_tri</span><span class="p">,</span> <span class="n">db_tri</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="n">x</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">weight</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">bias</span><span class="o">.</span><span class="n">grad</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="c1"># backward pass (torch)</span>
<span class="n">y_ref</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_ref</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">db_ref</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="c1"># compare</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dx_tri</span><span class="p">,</span> <span class="n">dx_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">db_tri</span><span class="p">,</span> <span class="n">db_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dw_tri</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;N&#39;</span><span class="p">],</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span><span class="mi">512</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">32</span><span class="p">)],</span>
<span class="n">line_arg</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span>
<span class="n">line_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;torch&#39;</span><span class="p">]</span> <span class="o">+</span> <span class="p">([</span><span class="s1">&#39;apex&#39;</span><span class="p">]</span> <span class="k">if</span> <span class="n">HAS_APEX</span> <span class="k">else</span> <span class="p">[]),</span>
<span class="n">line_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;Triton&#39;</span><span class="p">,</span> <span class="s1">&#39;Torch&#39;</span><span class="p">]</span> <span class="o">+</span> <span class="p">([</span><span class="s1">&#39;Apex&#39;</span><span class="p">]</span> <span class="k">if</span> <span class="n">HAS_APEX</span> <span class="k">else</span> <span class="p">[]),</span>
<span class="n">styles</span><span class="o">=</span><span class="p">[(</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;green&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;orange&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)],</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s1">&#39;GB/s&#39;</span><span class="p">,</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s1">&#39;layer-norm-backward&#39;</span><span class="p">,</span>
<span class="n">args</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;M&#39;</span><span class="p">:</span> <span class="mi">4096</span><span class="p">,</span> <span class="s1">&#39;dtype&#39;</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span><span class="p">,</span> <span class="s1">&#39;mode&#39;</span><span class="p">:</span> <span class="s1">&#39;backward&#39;</span><span class="p">}</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">bench_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">provider</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">&#39;backward&#39;</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># utility functions</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;apex&#39;</span><span class="p">:</span>
<span class="n">apex_layer_norm</span> <span class="o">=</span> <span class="n">apex</span><span class="o">.</span><span class="n">normalization</span><span class="o">.</span><span class="n">FusedLayerNorm</span><span class="p">(</span><span class="n">w_shape</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">apex_layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;forward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">/</span> <span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-6</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="n">y_fwd</span><span class="p">,</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="c1"># backward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;backward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">/</span> <span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-6</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">y_fwd</span><span class="p">()</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">y</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">grad_to_none</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">],</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 14.541 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/ae7fff29e1b574187bc930ed94bcc353/05-layer-norm.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">05-layer-norm.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../../python-api/triton.html" class="btn btn-neutral float-right" title="triton" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="04-low-memory-dropout.html" class="btn btn-neutral float-left" title="Low-Memory Dropout" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" data-toggle="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<span class="fa fa-book"> Other Versions</span>
v: master
<span class="fa fa-caret-down"></span>
</span>
<div class="rst-other-versions">
<dl>
<dt>Tags</dt>
<dd><a href="../../../v1.1.2/index.html">v1.1.2</a></dd>
</dl>
<dl>
<dt>Branches</dt>
<dd><a href="05-layer-norm.html">master</a></dd>
</dl>
</div>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>