Files
triton/python/examples/dot.py
2019-09-05 21:35:23 -04:00

68 lines
1.8 KiB
Python

import numpy as np
import triton
def run_tf():
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float32, shape=[M, K])
b = tf.placeholder(tf.float32, shape=[N, K])
tr_c = triton.ops.dot(a, b, transpose_a = False, transpose_b = True)
tr_d = triton.ops.dot(tr_c, b, transpose_a = True, transpose_b = False)
tf_c = tf.matmul(a, b, transpose_a = False, transpose_b = True)
tf_d = tf.matmul(tf_c, b, transpose_a = True, transpose_b = False)
# Gradient
tr_da = tf.gradients(tr_d, [a])
tf_da = tf.gradients(tf_d, [a])
# Reference
ha = np.random.rand(M, K).astype(np.float32)
hb = np.random.rand(K, N).astype(np.float32)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([tr_da, tf_da], feed_dict = {a: ha,
b: hb})
# Test
print(result[0][0])
print(result[1][0])
dif = np.abs(result[0][0] - result[1][0])
print("dif: %f" % np.max(dif))
def run_torch():
torch.manual_seed(0)
M, N, K = 128, 128, 128
a = torch.randn(M, K).cuda()
b = torch.randn(K, N).cuda()
a.requires_grad_(True)
b.requires_grad_(True)
torch_c = torch.matmul(a, torch.t(b))
torch_d = torch.matmul(torch.t(torch_c), b)
torch_y = torch.mean(torch_d)
triton_c = triton.ops.dot(a, b, False, True)
triton_d = triton.ops.dot(triton_c, b, True, False)
triton_y = torch.mean(triton_d)
# torch gradient
torch_y.backward()
torch_da = a.grad.clone()
torch_db = b.grad.clone()
# triton gradient
a.grad.zero_()
b.grad.zero_()
triton_y.backward()
triton_da = a.grad.clone()
triton_db = b.grad.clone()
print('Diff DA:', (torch_da - triton_da).max())
print('Diff DB:', (torch_db - triton_db).max())
try:
import tensorflow as tf
run_tf()
except ModuleNotFoundError:
pass
try:
import torch
run_torch()
except ModuleNotFoundError:
pass