Files
triton/lib/codegen/tune.cpp
2019-07-18 16:12:06 -07:00

390 lines
13 KiB
C++

#include "triton/codegen/tune.h"
#include "triton/ir/instructions.h"
#include "triton/ir/type.h"
#include "triton/ir/module.h"
#include "triton/ir/function.h"
#include "triton/ir/context_impl.h"
#include "triton/ir/constant.h"
#include "triton/driver/device.h"
#include <cstdlib>
namespace triton{
namespace codegen{
tune::tune(): num_global_ranges_(0){ }
bool is_hmma(ir::value *v){
bool result = false;
if(auto *x = dynamic_cast<ir::dot_inst*>(v)){
ir::value *a = x->get_operand(0);
ir::type *a_ty = a->get_type();
ir::value *b = x->get_operand(1);
ir::type *b_ty = b->get_type();
// inputs have to be FP16
result = a_ty->get_scalar_ty()->is_half_ty() && b_ty->get_scalar_ty()->is_half_ty();
// reduction has to be multiple of 4
result = result && ((a_ty->get_tile_shapes()[1]->get_value() % 4) == 0);
}
return result;
}
void tune::add_constraint(node_t x, node_t y) {
dependencies_[x].insert(y);
dependencies_[y].insert(x);
nodes_.insert(x);
nodes_.insert(y);
}
void tune::init_c_phi(ir::instruction *v) {
// Phi Nodes: all the incoming value share the result layout
if(auto *phi = dynamic_cast<ir::phi_node*>(v))
for(ir::value *op: phi->ops())
for(unsigned k = 0; k < phi->get_type()->get_tile_shapes().size(); k++)
if(dependencies_.find({op, k}) != dependencies_.end()
|| dependencies_.find({phi, k}) != dependencies_.end()){
add_constraint({phi, k}, {op, k});
}
}
void tune::init_c_graph(ir::instruction *v) {
// Reference shape
ir::type::tile_shapes_t::value_type one = ir::tile_type::make_one(v->get_parent()->get_context());
ir::type::tile_shapes_t shapes;
if(auto *store = dynamic_cast<ir::store_inst*>(v))
shapes = store->get_pointer_operand()->get_type()->get_tile_shapes();
else if(auto *atom = dynamic_cast<ir::atomic_add_inst*>(v))
shapes = atom->get_operand(0)->get_type()->get_tile_shapes();
else if(auto *downcast = dynamic_cast<ir::downcast_inst*>(v))
return;
else if(auto *reduce = dynamic_cast<ir::reduce_inst*>(v))
return;
else
shapes = v->get_type()->get_tile_shapes();
// Reshape
if(dynamic_cast<ir::reshape_inst*>(v)){
ir::value *op = v->get_operand(0);
unsigned current = 0;
for(unsigned i = 0; i < shapes.size(); i ++){
if(shapes[i] == one)
static_params_.insert({{v, i}, 1});
else
add_constraint({v, i}, {op, current++});
}
}
// Splat
else if(dynamic_cast<ir::splat_inst*>(v)){
}
// Trans
else if(dynamic_cast<ir::trans_inst*>(v)){
ir::value *op = v->get_operand(0);
size_t n_shapes = shapes.size();
for(unsigned i = 0; i < n_shapes; i++){
add_constraint({v, (i + 1) % n_shapes}, {op, i});
}
}
// Broadcast
else if(dynamic_cast<ir::broadcast_inst*>(v)){
ir::value *op = v->get_operand(0);
ir::type *op_ty = op->get_type();
const auto& op_shapes = op_ty->get_tile_shapes();
for(unsigned i = 0; i < shapes.size(); i ++){
if(op_shapes[i] == shapes[i] && v != op)
add_constraint({v, i}, {op, i});
}
}
// Matrix multiplication
else if(dynamic_cast<ir::dot_inst*>(v)){
ir::value *D = v->get_operand(2);
add_constraint({v, 0}, {D, 0});
add_constraint({v, 1}, {D, 1});
}
// Element-wise
else if(dynamic_cast<ir::user*>(v)) {
for(unsigned k = 0; k < v->get_num_results(); k++){
ir::value *result = v->get_result(k);
for(unsigned i = 0; i < shapes.size(); i ++){
for(ir::value* op: v->ops()){
add_constraint({result, i}, {op, i});
}
}
}
}
}
tune::fragment_t tune::get_fragmentation_type(node_t x, graph_t &graph){
std::list<node_t> work;
std::set<node_t> seen;
work.push_back(x);
while(!work.empty()){
node_t current = work.back();
if(is_hmma(current.first))
return HMMA_FRAGMENT_C;
work.pop_back();
seen.insert(current);
for(node_t y: graph[current]){
if(seen.find(y) == seen.end())
work.push_back(y);
}
}
return STRIDED_SCAN;
}
void tune::connected_components(node_t x, const std::vector<ir::metaparameter *> mps, const std::vector<std::string> prefixes, std::set<node_t> &nodes, graph_t &graph, unsigned group_id) {
groups_[x.first][x.second] = group_id;
if(nodes.find(x) != nodes.end()){
nodes.erase(x);
std::string suffix = ".d" + std::to_string(x.second);
for(int i = 0; i < mps.size(); i++)
params_[x.first].insert({prefixes[i] + suffix, mps[i]});
ir::type *ty = x.first->get_type();
if(ty->is_tile_ty()){
ir::type::tile_shapes_t::value_type shape = ty->get_tile_shapes().at(x.second);
if(auto mp = dynamic_cast<ir::metaparameter*>(shape))
params_[x.first].insert({"shape" + suffix, mp});
}
if(auto range = dynamic_cast<ir::get_global_range_inst*>(x.first)){
unsigned ax = range->get_axis();
global_range_sizes_[ax] = params_[x.first].at("shape.d0");
num_global_ranges_ = std::max(num_global_ranges_, ax + 1);
}
if(static_params_.find(x) != static_params_.end()){
for(ir::metaparameter *mp: mps)
mp->set_value(static_params_.at(x));
}
for(const node_t &y: graph[x])
connected_components(y, mps, prefixes, nodes, graph, group_id);
}
}
std::vector<ir::metaparameter *> tune::get_params(ir::module &mod) {
std::vector<ir::metaparameter*> result;
std::set<ir::metaparameter*> seen;
for(ir::function *fn: mod.get_function_list())
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i : block->get_inst_list())
for(auto &x: params_[i])
if(seen.insert(x.second).second && !x.second->has_value()){
// std::cout << i->get_name() << " " << x.first << std::endl;
result.push_back(x.second);
}
for(auto x: mod.globals()){
if(auto mp = dynamic_cast<ir::metaparameter*>(x.second))
if(seen.insert(mp).second && !mp->has_value())
result.push_back(mp);
}
return result;
}
std::map<std::string, ir::metaparameter *> tune::get_params(ir::instruction* i) {
return params_.at(i);
}
unsigned tune::get_param_group(ir::value *value, unsigned ax) {
unsigned result = groups_.at(value).at(ax);
return result;
}
void tune::run(ir::module &mod) {
ir::context &ctx = mod.get_context();
// Create metaparameters
for(ir::function *fn: mod.get_function_list()){
// Build constraints graph
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i : block->get_inst_list())
if(i->has_tile_result_or_op()){
init_c_graph(i);
}
// Build phi constraints
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i : block->get_inst_list())
if(i->has_tile_result_or_op())
init_c_phi(i);
// Layout parameters
unsigned group_id = 0;
for(auto x: nodes_){
fragments_[x] = get_fragmentation_type(x, dependencies_);
}
while(!nodes_.empty()) {
ir::type *ty = mod.get_builder().get_int32_ty();
node_t node = *nodes_.begin();
if(fragments_[node] == STRIDED_SCAN) {
ir::metaparameter *nts = ir::metaparameter::create(ctx, ty, 1, 1);
ir::metaparameter *mts = ir::metaparameter::create(ctx, ty, 4, 32);
connected_components(node, {nts, mts}, {"nts", "mts"}, nodes_, dependencies_, group_id++);
nts->set_value(1);
}
else {
ir::metaparameter *fpw = ir::metaparameter::create(ctx, ty, 2, 2);
ir::metaparameter *wpt = ir::metaparameter::create(ctx, ty, 2, 4);
connected_components(node, {fpw, wpt}, {"fpw", "wpt"}, nodes_, dependencies_, group_id++);
}
}
}
// Simplify metaparameters
for(ir::function *fn: mod.get_function_list())
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i : block->get_inst_list()){
if(fragments_.find({i, 0}) != fragments_.end() && fragments_.at({i, 0}) != STRIDED_SCAN)
continue;
if(dynamic_cast<ir::load_inst*>(i) && i->get_type()->is_tile_ty()){
ir::type *ty = mod.get_builder().get_int32_ty();
std::unique_ptr<ir::metaparameter> tmp(ir::metaparameter::create(ctx, ty, 4, 4));
*params_.at(i).at("nts.d0") = *tmp;
}
if(dynamic_cast<ir::dot_inst*>(i) && i->get_type()->is_tile_ty()){
ir::type *ty = mod.get_builder().get_int32_ty();
std::unique_ptr<ir::metaparameter> tmp1(ir::metaparameter::create(ctx, ty, 4, 4));
std::unique_ptr<ir::metaparameter> tmp2(ir::metaparameter::create(ctx, ty, 4, 4));
*params_.at(i).at("nts.d0") = *tmp1;
*params_.at(i).at("nts.d1") = *tmp2;
}
}
}
void tune::init(ir::module &mod) {
for(ir::function *fn: mod.get_function_list()){
// initialize grids
std::map<ir::metaparameter*, ir::instruction*> references;
create_grids(grids_, references, fn);
}
// number of threads
num_threads_ = get_req_num_threads(grids_.front());
}
unsigned tune::get_req_num_threads(ir::instruction *i){
if(fragments_.at({i, 0}) == STRIDED_SCAN) {
unsigned result = 1;
for(unsigned k = 0; k < i->get_type()->get_tile_shapes().size(); k++){
std::string suffix = ".d" + std::to_string(k);
result *= params_.at(i).at("mts" + suffix)->get_value();
}
return result;
}
else {
unsigned result = 32;
for(unsigned k = 0; k < i->get_type()->get_tile_shapes().size(); k++){
std::string suffix = ".d" + std::to_string(k);
result *= params_.at(i).at("wpt" + suffix)->get_value();
}
return result;
}
}
void tune::create_grids(std::vector<ir::instruction*> &grids,
std::map<ir::metaparameter*, ir::instruction*> &references,
ir::function *fn) {
// get number of dimensions greater than 1
auto get_tile_gt1_dim = [&](ir::value *v){
unsigned result = 0;
auto one = ir::tile_type::make_one(fn->get_fn_type()->get_context());
for(ir::constant_int *shape: v->get_type()->get_tile_shapes()) {
result += (shape != one);
}
return result;
};
// bind references
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i: block->get_inst_list()){
if(!i->get_type()->is_tile_ty())
continue;
for(auto &param: params_.at(i)){
if(param.second->get_value() == 1)
continue;
ir::instruction *&r = references[param.second];
if(!r || get_tile_gt1_dim(i) > get_tile_gt1_dim(r))
r = i;
}
}
// create grid
for(auto &ref: references)
if(std::find(grids.begin(), grids.end(), ref.second) == grids.end())
grids.push_back(ref.second);
}
bool tune::check_constraints(std::map<ir::value *, std::vector<std::string>> &errors) {
using std::to_string;
auto get_num_warps = [&](ir::instruction *i, unsigned axis) {
std::string strk = to_string(axis);
if(fragments_.at({i, axis}) == STRIDED_SCAN){
unsigned mts = params_[i]["mts.d" + strk]->get_value();
unsigned nts = params_[i]["nts.d" + strk]->get_value();
unsigned shape = i->get_type()->get_tile_shapes()[axis]->get_value();
return shape / (mts * nts);
}
else{
return (unsigned)params_[i]["wpt.d" + strk]->get_value();
}
};
// number of warps
ir::instruction *first = grids_.front();
int num_warps = 1;
for(size_t k = 0; k < first->get_type()->get_tile_shapes().size(); k++)
num_warps *= get_num_warps(first, k);
// check constraints
for(ir::instruction *i: grids_){
ir::type *ty = i->get_type();
const auto &shapes = ty->get_tile_shapes();
// for each dimension, the product of layout components
// must device the shape
for(size_t k = 0; k < shapes.size(); k++) {
std::string strk = to_string(k);
unsigned multiple;
if(fragments_.at({i, 0}) == STRIDED_SCAN) {
ir::metaparameter *mts = params_[i]["mts.d" + strk];
ir::metaparameter *nts = params_[i]["nts.d" + strk];
multiple = mts->get_value()*nts->get_value();
}
else {
ir::metaparameter *fpw = params_[i]["fpw.d" + strk];
ir::metaparameter *wpt = params_[i]["wpt.d" + strk];
multiple = fpw->get_value()*wpt->get_value()*8;
}
if(shapes[k]->get_value() % multiple != 0)
errors[i].push_back("for dim " + strk + ": shape (" + to_string(shapes[k]->get_value()) + ")"
" is not a multiple of layout (" + to_string(multiple) + ")");
}
// the product of mma fragments per warp must be 4
if(fragments_.at({i, 0}) == HMMA_FRAGMENT_C){
unsigned prod = 1;
for(size_t k = 0; k < shapes.size(); k++){
prod *= params_[i]["fpw.d" + std::to_string(k)]->get_value();
}
if(prod != 4)
errors[i].push_back("HMMA must have only 4 fragments per warp");
}
int num_threads = get_req_num_threads(i);
if(num_threads % 32 != 0)
errors[i].push_back("number of threads per block (" + to_string(num_threads) + ") must be multiple of warp size");
if(num_threads != num_threads_)
errors[i].push_back("Number of threads must be the same for all tiles (" + to_string(num_threads_) + ")");
}
return errors.empty();
}
unsigned tune::get_num_global_range() {
return num_global_ranges_;
}
unsigned tune::get_global_range_size(unsigned axis) {
return global_range_sizes_.at(axis)->get_value();
}
unsigned tune::get_num_threads() {
return num_threads_;
}
}
}