improvements and bugfixes: * Added preliminary support for extended Einstein summation in PyTriton * Significant performance improvement on FP32 kernels containing matrix multiplication * Added re-coalescing pass for FP16 kernels containing matrix multiplication * Various bugfixes
126 lines
4.4 KiB
Python
126 lines
4.4 KiB
Python
import triton
|
|
|
|
class _dot(triton.function):
|
|
|
|
src = """
|
|
void dot(TYPE * A __noalias __readonly __aligned(16),
|
|
TYPE * B __noalias __readonly __aligned(16),
|
|
TYPE * C,
|
|
float alpha,
|
|
int M, int N, int K,
|
|
int lda __multipleof(8),
|
|
int ldb __multipleof(8),
|
|
int ldc) {
|
|
// prologue
|
|
int ridx = get_program_id(0);
|
|
int ridy = get_program_id(1);
|
|
int rm[TM] = ridx * TM + 0 ... TM;
|
|
int rn[TN] = ridy * TN + 0 ... TN;
|
|
int rk[TK] = 0 ... TK;
|
|
|
|
// pointers to operands
|
|
TYPE* pa[SHAPE_A] = A + rk[BROADCAST_AK] * STRIDE_AK + rm[BROADCAST_AM] * STRIDE_AM;
|
|
TYPE* pb[SHAPE_B] = B + rk[BROADCAST_BK] * STRIDE_BK + rn[BROADCAST_BN] * STRIDE_BN;
|
|
|
|
// prefetches operands
|
|
bool checka[SHAPE_A] = rk[BROADCAST_AK] < K;
|
|
bool checkb[SHAPE_B] = rk[BROADCAST_BK] < K;
|
|
TYPE a[SHAPE_A] = checka ? *pa : 0;
|
|
TYPE b[SHAPE_B] = checkb ? *pb : 0;
|
|
|
|
// reduction loop
|
|
float c[TM, TN] = 0;
|
|
for(int k = K; k > 0; k -= TK){
|
|
c += USE_A @ USE_B;
|
|
bool checka[SHAPE_A] = k > TK;
|
|
bool checkb[SHAPE_B] = k > TK;
|
|
pa += TK * STRIDE_AK;
|
|
pb += TK * STRIDE_BK;
|
|
a = *?(checka)pa;
|
|
b = *?(checkb)pb;
|
|
}
|
|
//c = c * alpha;
|
|
|
|
// epilogue
|
|
int rxm[TM] = get_program_id(0) * TM + 0 ... TM;
|
|
int rxn[TN] = get_program_id(1) * TN + 0 ... TN;
|
|
TYPE* pc[TM, TN] = C + rxm[:, newaxis] * ldc + rxn[newaxis, :];
|
|
bool checkc[TM, TN] = (rxm[:, newaxis] < M) && (rxn[newaxis, :] < N);
|
|
*?(checkc)pc = (TYPE[TM, TN])c;
|
|
}
|
|
"""
|
|
kernel = triton.kernel(src, ['C'])
|
|
|
|
@staticmethod
|
|
def _call(a, b, transpose_a, transpose_b, bench):
|
|
# extract shapes
|
|
shape_a = triton.shape(a)
|
|
shape_b = triton.shape(b)
|
|
M, Ka = shape_a[0], shape_a[1]
|
|
Kb, N = shape_b[0], shape_b[1]
|
|
# transpose shapes
|
|
if transpose_a:
|
|
M, Ka = Ka, M
|
|
if transpose_b:
|
|
Kb, N = N, Kb
|
|
# contiguous dimensions
|
|
lda = M if transpose_a else Ka
|
|
ldb = Kb if transpose_b else N
|
|
ldc = N
|
|
# data-type
|
|
dtype = a.dtype
|
|
# allocate output
|
|
c = triton.empty([M, N], dtype = dtype)
|
|
# compute
|
|
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
|
|
# macros -- not necessary but makes kernel source-code simpler
|
|
macros = {# handle A transposition
|
|
'USE_A' : '^a' if transpose_a else 'a',
|
|
'STRIDE_AK' : 'lda' if transpose_a else '1',
|
|
'STRIDE_AM' : '1' if transpose_a else 'lda',
|
|
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
|
|
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
|
|
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
|
|
# handle B transposition
|
|
'USE_B' : '^b' if transpose_b else 'b',
|
|
'STRIDE_BK' : '1' if transpose_b else 'ldb',
|
|
'STRIDE_BN' : 'ldb' if transpose_b else '1',
|
|
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
|
|
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
|
|
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
|
|
_dot.kernel(a, b, c, 1., M, N, Ka, lda, ldb, ldc,
|
|
grid, bench=bench,
|
|
AT = transpose_a, BT = transpose_b, TYPE = dtype,
|
|
TM = [64], TN = [128], TK = [8], **macros)
|
|
return c
|
|
|
|
@staticmethod
|
|
def forward(ctx, a, b, transpose_a = False, transpose_b = False, bench = 0):
|
|
ctx.save_for_backward(a, b)
|
|
ctx.t_a = transpose_a
|
|
ctx.t_b = transpose_b
|
|
ctx.bench = bench
|
|
return _dot._call(a, b, transpose_a, transpose_b, bench)
|
|
|
|
@staticmethod
|
|
def backward(ctx, dy):
|
|
a, b = ctx.saved_tensors
|
|
t_a, t_b = ctx.t_a, ctx.t_b
|
|
bench = ctx.bench
|
|
if not t_a and not t_b:
|
|
da = _dot._call(dy, b, False, True, bench)
|
|
db = _dot._call(a, dy, True, False, bench)
|
|
elif not t_a and t_b:
|
|
da = _dot._call(dy, b, False, False, bench)
|
|
db = _dot._call(dy, a, True, False, bench)
|
|
elif t_a and not t_b:
|
|
da = _dot._call(b, dy, False, True, bench)
|
|
db = _dot._call(a, dy, False, False, bench)
|
|
elif t_a and t_b:
|
|
da = _dot._call(b, dy, True, True, bench)
|
|
db = _dot._call(dy, a, True, True, bench)
|
|
else:
|
|
assert False
|
|
return da, db, None, None, None
|
|
|
|
dot = _dot.apply |