Files
triton/python/examples/dot.py

140 lines
4.7 KiB
Python

import tensorflow as tf
import triton
import numpy as np
class dot(triton.function):
src = """
void dot(TYPE * A, TYPE * B, TYPE * C,
int M, int N, int K,
int lda __multipleof(8),
int ldb __multipleof(8),
int ldc) {
// prologue
int ridx = get_program_id(0);
int ridy = get_program_id(1);
int rxa[TM] = ridx * TM + 0 ... TM;
int ryb[TN] = ridy * TN + 0 ... TN;
int rka[TK] = 0 ... TK;
int rkb[TK] = 0 ... TK;
float c[TM, TN] = 0;
// pointers to operands
TYPE* pa[SHAPE_A] = A + rka[BROADCAST_AK] * STRIDE_AK + rxa[BROADCAST_AM] * STRIDE_AM;
TYPE* pb[SHAPE_B] = B + rkb[BROADCAST_BK] * STRIDE_BK + ryb[BROADCAST_BN] * STRIDE_BN;
// prefetches operands
TYPE a[SHAPE_A] = *pa;
TYPE b[SHAPE_B] = *pb;
// reduction loop
for(int k = K; k > 0; k-= TK){
c += USE_A @ USE_B;
pa = pa + TK * STRIDE_AK;
pb = pb + TK * STRIDE_BK;
a = *pa;
b = *pb;
}
// epilogue
int rxc[TM] = ridx * TM + 0 ... TM;
int ryc[TN] = ridy * TN + 0 ... TN;
TYPE* pc[TM, TN] = C + ryc[newaxis, :] + rxc[:, newaxis] * ldc;
bool checkc[TM, TN] = (rxc < M)[:, newaxis] && (ryc < N)[newaxis, :];
*?(checkc) pc = c;
}
"""
op = triton.op(src, ['C'])
@staticmethod
def _call(a, b, transpose_a, transpose_b):
# extract shapes
shape_a = triton.shape(a)
shape_b = triton.shape(b)
M, Ka = shape_a[0], shape_a[1]
Kb, N = shape_b[0], shape_b[1]
# transpose shapes
if transpose_a:
M, Ka = Ka, M
if transpose_b:
Kb, N = N, Kb
# contiguous dimensions
lda = M if transpose_a else Ka
ldb = Kb if transpose_b else N
ldc = N
# data-type
dtype = a.dtype
# allocate output
c = triton.empty([M, N], dtype = dtype)
# compute
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
# macros -- not necessary but makes kernel source-code simpler
macros = {# handle A transposition
'USE_A' : '^a' if transpose_a else 'a',
'STRIDE_AK' : 'lda' if transpose_a else '1',
'STRIDE_AM' : '1' if transpose_a else 'lda',
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
# handle B transposition
'USE_B' : '^b' if transpose_b else 'b',
'STRIDE_BK' : '1' if transpose_b else 'ldb',
'STRIDE_BN' : 'ldb' if transpose_b else '1',
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
return dot.op(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
AT = transpose_a, BT = transpose_b, TYPE = dtype,
TM = [64, 128], TN = [64, 128], TK = [8], **macros)
@staticmethod
def forward(ctx, a, b, transpose_a = False, transpose_b = False):
ctx.save_for_backward(a, b, transpose_a, transpose_b)
return dot._call(a, b, transpose_a, transpose_b)
@staticmethod
def backward(ctx, dy):
a, b, t_a, t_b = ctx.saved_tensors
if not t_a and not t_b:
da = dot._call(dy, b, False, True)
db = dot._call(a, dy, True, False)
elif not t_a and t_b:
da = dot._call(dy, b, False, False)
db = dot._call(dy, a, True, False)
elif t_a and not t_b:
da = dot._call(b, dy, False, True)
db = dot._call(a, dy, False, False)
elif t_a and t_b:
da = dot._call(b, dy, True, True)
db = dot._call(dy, a, True, True)
else:
assert False
return [da, db, None, None, None, None, None, None, None]
def run_dot():
M, N, K = 128, 128, 128
a = tf.placeholder(tf.float32, shape=[M, K])
b = tf.placeholder(tf.float32, shape=[N, K])
_dot = dot.apply
tr_c = _dot(a, b, transpose_a = False, transpose_b = True)
tr_d = _dot(tr_c, b, transpose_a = True, transpose_b = False)
tf_c = tf.matmul(a, b, transpose_a = False, transpose_b = True)
tf_d = tf.matmul(tf_c, b, transpose_a = True, transpose_b = False)
# Gradient
tr_da = tf.gradients(tr_d, [a])
tf_da = tf.gradients(tf_d, [a])
# Reference
ha = np.random.rand(M, K).astype(np.float32)
hb = np.random.rand(K, N).astype(np.float32)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([tr_da, tf_da], feed_dict = {a: ha,
b: hb})
# Test
print(result[0][0])
print(result[1][0])
dif = np.abs(result[0][0] - result[1][0])
print("dif: %f" % np.max(dif))
run_dot()