Files
triton/autotune/python/dataset.py
2014-10-04 08:58:11 +02:00

65 lines
1.8 KiB
Python

import os
import sys
import re
import random
import numpy as np
from sklearn.neighbors.kde import KernelDensity
from pyviennacl.atidlas import FetchingPolicy
def resample(X, draw):
Xtuples = [tuple(x) for x in X]
r = random.random()
while(True):
x = draw()
if tuple(x) not in Xtuples:
break
return x.astype(int)
def generate_dataset(TemplateType, execution_handler, nTuning, nDataPoints, compute_perf, draw):
print "Getting some good profiles..."
nDim = draw().size
X = np.empty((nTuning, nDim))
t = np.empty(nTuning)
profiles = []
for i in range(nTuning):
x = resample(X, draw)
y = execution_handler(x)
if y not in profiles:
profiles.append(y)
idx = profiles.index(y)
X[i,:] = x
t[i] = idx
print "Generating the dataset..."
Y = np.empty((nDataPoints, len(profiles)))
X = np.empty((nDataPoints, nDim))
t = []
for i in range(nDataPoints):
x = resample(X, draw)
for j,y in enumerate(profiles):
T = execution_handler(x, os.devnull, y)
Y[i,j] = compute_perf(x, T)
idx = np.argmax(Y[i,:])
X[i,:] = x
t = np.argmax(Y[:i+1,], axis=1)
if i%10==0:
sys.stdout.write('%d data points generated\r'%i)
sys.stdout.flush()
template_name = TemplateType.__name__
dir = os.path.join("data", template_name)
if not os.path.exists(dir):
os.makedirs(dir)
np.savetxt(os.path.join(dir,"profiles.csv"), profiles)
np.savetxt(os.path.join(dir,"X.csv"), X)
np.savetxt(os.path.join(dir,"Y.csv"), Y)
profiles = np.loadtxt(os.path.join(dir, "profiles.csv"))
X = np.loadtxt(os.path.join(dir, "X.csv"),ndmin=2)
Y = np.loadtxt(os.path.join(dir, "Y.csv"),ndmin=2)
return X, Y, profiles