Files
Gymnasium/tests/vector/test_vector_env.py

320 lines
9.9 KiB
Python
Raw Permalink Normal View History

"""Test vector environment implementations."""
2024-09-19 12:18:43 +01:00
from __future__ import annotations
import re
from functools import partial
import numpy as np
import pytest
import gymnasium as gym
2024-09-19 12:18:43 +01:00
from gymnasium.core import ActType, ObsType
from gymnasium.spaces import Discrete
from gymnasium.utils.env_checker import data_equivalence
from gymnasium.vector import AsyncVectorEnv, SyncVectorEnv
from gymnasium.vector.vector_env import AutoresetMode
2024-09-19 12:18:43 +01:00
from tests.spaces.utils import TESTING_SPACES, TESTING_SPACES_IDS
from tests.testing_env import GenericTestEnv
from tests.vector.testing_utils import make_env
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
@pytest.mark.parametrize(
"autoreset_mode", [AutoresetMode.NEXT_STEP, AutoresetMode.SAME_STEP]
)
def test_vector_env_equal(shared_memory, autoreset_mode):
"""Test that vector environment are equal for both async and sync variants."""
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
num_steps = 100
async_env = AsyncVectorEnv(
env_fns, shared_memory=shared_memory, autoreset_mode=autoreset_mode
)
sync_env = SyncVectorEnv(env_fns, autoreset_mode=autoreset_mode)
assert async_env.num_envs == sync_env.num_envs
assert async_env.observation_space == sync_env.observation_space
assert async_env.single_observation_space == sync_env.single_observation_space
assert async_env.action_space == sync_env.action_space
assert async_env.single_action_space == sync_env.single_action_space
async_observations, async_infos = async_env.reset(seed=0)
sync_observations, sync_infos = sync_env.reset(seed=0)
assert np.all(async_observations == sync_observations)
assert data_equivalence(async_infos, sync_infos)
for _ in range(num_steps):
actions = async_env.action_space.sample()
assert actions in sync_env.action_space
(
async_observations,
async_rewards,
async_terminations,
async_truncations,
async_infos,
) = async_env.step(actions)
(
sync_observations,
sync_rewards,
sync_terminations,
sync_truncations,
sync_infos,
) = sync_env.step(actions)
assert np.all(async_observations == sync_observations)
assert np.all(async_rewards == sync_rewards)
assert np.all(async_terminations == sync_terminations)
assert np.all(async_truncations == sync_truncations)
assert data_equivalence(async_infos, sync_infos)
async_env.close()
sync_env.close()
2024-09-19 12:18:43 +01:00
def debug_step_func(self, action: ActType) -> tuple[ObsType, float, bool, bool, dict]:
assert action in self.action_space
return self.observation_space.sample(), 0, False, False, {}
@pytest.mark.parametrize(
"vectoriser",
(
SyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=True),
partial(AsyncVectorEnv, shared_memory=False),
),
ids=["Sync", "Async with shared memory", "Async without shared memory"],
)
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
def test_vector_obs_action_spaces(vectoriser, space, num_envs=3):
try:
envs = vectoriser(
[
lambda: GenericTestEnv(
action_space=space,
observation_space=space,
step_func=debug_step_func,
)
for _ in range(num_envs)
]
)
except TypeError as err:
assert (
"has a dynamic shape so its not possible to make a static shared memory."
in str(err)
)
pytest.skip("Skipping space with dynamic shape")
assert envs.observation_space == envs.action_space
obs, _ = envs.reset()
assert obs in envs.observation_space
obs, _, _, _, _ = envs.step(envs.action_space.sample())
envs.close()
@pytest.mark.parametrize(
"vectoriser",
(
SyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=True),
partial(AsyncVectorEnv, shared_memory=False),
),
ids=["Sync", "Async with shared memory", "Async without shared memory"],
)
def test_final_obs_info(vectoriser):
"""Tests that the vector environments correctly return the final observation and info."""
def reset_fn(self, seed=None, options=None):
return 0, {"reset": True}
def thunk():
return GenericTestEnv(
action_space=Discrete(4),
observation_space=Discrete(4),
2022-12-05 19:14:56 +00:00
reset_func=reset_fn,
step_func=lambda self, action: (
action if action < 3 else 0,
0,
action >= 3,
False,
{"action": action},
),
)
env = vectoriser([thunk])
obs, info = env.reset()
assert obs == np.array([0]) and info == {
"reset": np.array([True]),
"_reset": np.array([True]),
}
obs, _, termination, _, info = env.step([1])
assert (
obs == np.array([1])
and termination == np.array([False])
and info == {"action": np.array([1]), "_action": np.array([True])}
)
obs, _, termination, _, info = env.step([2])
assert (
obs == np.array([2])
and termination == np.array([False])
and info == {"action": np.array([2]), "_action": np.array([True])}
)
obs, _, termination, _, info = env.step([3])
assert obs == np.array([0]) and info == {"action": 3, "_action": np.array([True])}
obs, _, terminated, _, info = env.step([4])
assert (
obs == np.array([0])
and termination == np.array([True])
and info["reset"] == np.array([True])
)
env.close()
@pytest.fixture
def example_env_list():
"""Example vector environment."""
return [make_env("CartPole-v1", i) for i in range(4)]
@pytest.mark.parametrize(
"venv_constructor",
[
SyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=True),
partial(AsyncVectorEnv, shared_memory=False),
],
)
def test_random_seeding_basics(venv_constructor, example_env_list):
seed = 42
vector_env = venv_constructor(example_env_list)
vector_env.reset(seed=seed)
assert vector_env.np_random_seed == tuple(
seed + i for i in range(vector_env.num_envs)
)
# resetting with seed=None means seed remains the same
vector_env.reset(seed=None)
assert vector_env.np_random_seed == tuple(
seed + i for i in range(vector_env.num_envs)
)
@pytest.mark.parametrize(
"venv_constructor",
[
SyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=True),
partial(AsyncVectorEnv, shared_memory=False),
],
)
def test_random_seeds_set_at_retrieval(venv_constructor, example_env_list):
vector_env = venv_constructor(example_env_list)
assert len(set(vector_env.np_random_seed)) == vector_env.num_envs
# default seed starts at zero. Adjust or remove this test if the default seed changes
assert vector_env.np_random_seed == tuple(range(vector_env.num_envs))
@pytest.mark.parametrize(
"vectoriser",
[
SyncVectorEnv,
AsyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=False),
],
ids=["Sync", "Async(shared_memory=True)", "Async(shared_memory=False)"],
)
def test_partial_reset(vectoriser):
envs = vectoriser(
[lambda: gym.make("CartPole-v1") for _ in range(3)],
autoreset_mode=AutoresetMode.DISABLED,
)
reset_obs, _ = envs.reset(seed=[0, 1, 2])
envs.action_space.seed(123)
envs.step(envs.action_space.sample())
envs.step(envs.action_space.sample())
step_obs, *_ = envs.step(envs.action_space.sample())
reset_mask_obs, _ = envs.reset(
seed=[0, 1, 0], options={"reset_mask": np.array([True, True, False])}
)
assert np.all(reset_mask_obs[:2] == reset_obs[:2])
assert np.all(reset_mask_obs[2] == step_obs[2])
envs.close()
@pytest.mark.parametrize(
"vectoriser",
[
SyncVectorEnv,
AsyncVectorEnv,
partial(AsyncVectorEnv, shared_memory=False),
],
ids=["Sync", "Async(shared_memory=True)", "Async(shared_memory=False)"],
)
def test_partial_reset_failure(vectoriser):
envs = vectoriser(
[lambda: gym.make("CartPole-v1") for _ in range(3)],
autoreset_mode=AutoresetMode.DISABLED,
)
# Test first reset using a mask
# with pytest.raises(AssertionError):
# envs.reset(options={"reset_mask": np.array([True, True, False])})
# Reset with all trues
envs.reset(options={"reset_mask": np.array([True, True, True])})
# Reset with mask of an incorrect shape
with pytest.raises(
AssertionError,
match=re.escape(
"`options['reset_mask': mask]` must have shape `(3,)`, got (1,)"
),
):
envs.reset(options={"reset_mask": np.array([True])})
with pytest.raises(
AssertionError,
match=re.escape(
"options['reset_mask': mask]` must have shape `(3,)`, got (4,)"
),
):
envs.reset(options={"reset_mask": np.array([True, True, False, False])})
with pytest.raises(
AssertionError,
match=re.escape(
"`options['reset_mask': mask]` must have shape `(3,)`, got (1, 3)"
),
):
envs.reset(options={"reset_mask": np.array([[True, True, True]])})
with pytest.raises(
AssertionError,
match=re.escape(
"`options['reset_mask': mask]` must contain a boolean array, got reset_mask=[False False False]"
),
):
envs.reset(options={"reset_mask": np.array([False, False, False])})
with pytest.raises(
AssertionError,
match=re.escape(
"`options['reset_mask': mask]` must have `dtype=np.bool_`, got int64"
),
):
envs.reset(options={"reset_mask": np.array([1, 1, 0])})
with pytest.raises(
AssertionError,
match=re.escape(
"`options['reset_mask': mask]` must have `dtype=np.bool_`, got float64"
),
):
envs.reset(options={"reset_mask": np.array([1.0, 1.0, 0.0])})