mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-03 22:54:23 +00:00
320 lines
9.9 KiB
Python
320 lines
9.9 KiB
Python
"""Test vector environment implementations."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import gymnasium as gym
|
|
from gymnasium.core import ActType, ObsType
|
|
from gymnasium.spaces import Discrete
|
|
from gymnasium.utils.env_checker import data_equivalence
|
|
from gymnasium.vector import AsyncVectorEnv, SyncVectorEnv
|
|
from gymnasium.vector.vector_env import AutoresetMode
|
|
from tests.spaces.utils import TESTING_SPACES, TESTING_SPACES_IDS
|
|
from tests.testing_env import GenericTestEnv
|
|
from tests.vector.testing_utils import make_env
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"autoreset_mode", [AutoresetMode.NEXT_STEP, AutoresetMode.SAME_STEP]
|
|
)
|
|
def test_vector_env_equal(shared_memory, autoreset_mode):
|
|
"""Test that vector environment are equal for both async and sync variants."""
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
num_steps = 100
|
|
|
|
async_env = AsyncVectorEnv(
|
|
env_fns, shared_memory=shared_memory, autoreset_mode=autoreset_mode
|
|
)
|
|
sync_env = SyncVectorEnv(env_fns, autoreset_mode=autoreset_mode)
|
|
|
|
assert async_env.num_envs == sync_env.num_envs
|
|
assert async_env.observation_space == sync_env.observation_space
|
|
assert async_env.single_observation_space == sync_env.single_observation_space
|
|
assert async_env.action_space == sync_env.action_space
|
|
assert async_env.single_action_space == sync_env.single_action_space
|
|
|
|
async_observations, async_infos = async_env.reset(seed=0)
|
|
sync_observations, sync_infos = sync_env.reset(seed=0)
|
|
assert np.all(async_observations == sync_observations)
|
|
assert data_equivalence(async_infos, sync_infos)
|
|
|
|
for _ in range(num_steps):
|
|
actions = async_env.action_space.sample()
|
|
assert actions in sync_env.action_space
|
|
|
|
(
|
|
async_observations,
|
|
async_rewards,
|
|
async_terminations,
|
|
async_truncations,
|
|
async_infos,
|
|
) = async_env.step(actions)
|
|
(
|
|
sync_observations,
|
|
sync_rewards,
|
|
sync_terminations,
|
|
sync_truncations,
|
|
sync_infos,
|
|
) = sync_env.step(actions)
|
|
|
|
assert np.all(async_observations == sync_observations)
|
|
assert np.all(async_rewards == sync_rewards)
|
|
assert np.all(async_terminations == sync_terminations)
|
|
assert np.all(async_truncations == sync_truncations)
|
|
assert data_equivalence(async_infos, sync_infos)
|
|
|
|
async_env.close()
|
|
sync_env.close()
|
|
|
|
|
|
def debug_step_func(self, action: ActType) -> tuple[ObsType, float, bool, bool, dict]:
|
|
assert action in self.action_space
|
|
return self.observation_space.sample(), 0, False, False, {}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vectoriser",
|
|
(
|
|
SyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=True),
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
),
|
|
ids=["Sync", "Async with shared memory", "Async without shared memory"],
|
|
)
|
|
@pytest.mark.parametrize("space", TESTING_SPACES, ids=TESTING_SPACES_IDS)
|
|
def test_vector_obs_action_spaces(vectoriser, space, num_envs=3):
|
|
try:
|
|
envs = vectoriser(
|
|
[
|
|
lambda: GenericTestEnv(
|
|
action_space=space,
|
|
observation_space=space,
|
|
step_func=debug_step_func,
|
|
)
|
|
for _ in range(num_envs)
|
|
]
|
|
)
|
|
except TypeError as err:
|
|
assert (
|
|
"has a dynamic shape so its not possible to make a static shared memory."
|
|
in str(err)
|
|
)
|
|
pytest.skip("Skipping space with dynamic shape")
|
|
|
|
assert envs.observation_space == envs.action_space
|
|
|
|
obs, _ = envs.reset()
|
|
assert obs in envs.observation_space
|
|
obs, _, _, _, _ = envs.step(envs.action_space.sample())
|
|
|
|
envs.close()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vectoriser",
|
|
(
|
|
SyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=True),
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
),
|
|
ids=["Sync", "Async with shared memory", "Async without shared memory"],
|
|
)
|
|
def test_final_obs_info(vectoriser):
|
|
"""Tests that the vector environments correctly return the final observation and info."""
|
|
|
|
def reset_fn(self, seed=None, options=None):
|
|
return 0, {"reset": True}
|
|
|
|
def thunk():
|
|
return GenericTestEnv(
|
|
action_space=Discrete(4),
|
|
observation_space=Discrete(4),
|
|
reset_func=reset_fn,
|
|
step_func=lambda self, action: (
|
|
action if action < 3 else 0,
|
|
0,
|
|
action >= 3,
|
|
False,
|
|
{"action": action},
|
|
),
|
|
)
|
|
|
|
env = vectoriser([thunk])
|
|
obs, info = env.reset()
|
|
assert obs == np.array([0]) and info == {
|
|
"reset": np.array([True]),
|
|
"_reset": np.array([True]),
|
|
}
|
|
|
|
obs, _, termination, _, info = env.step([1])
|
|
assert (
|
|
obs == np.array([1])
|
|
and termination == np.array([False])
|
|
and info == {"action": np.array([1]), "_action": np.array([True])}
|
|
)
|
|
|
|
obs, _, termination, _, info = env.step([2])
|
|
assert (
|
|
obs == np.array([2])
|
|
and termination == np.array([False])
|
|
and info == {"action": np.array([2]), "_action": np.array([True])}
|
|
)
|
|
|
|
obs, _, termination, _, info = env.step([3])
|
|
assert obs == np.array([0]) and info == {"action": 3, "_action": np.array([True])}
|
|
|
|
obs, _, terminated, _, info = env.step([4])
|
|
assert (
|
|
obs == np.array([0])
|
|
and termination == np.array([True])
|
|
and info["reset"] == np.array([True])
|
|
)
|
|
|
|
env.close()
|
|
|
|
|
|
@pytest.fixture
|
|
def example_env_list():
|
|
"""Example vector environment."""
|
|
return [make_env("CartPole-v1", i) for i in range(4)]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"venv_constructor",
|
|
[
|
|
SyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=True),
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
],
|
|
)
|
|
def test_random_seeding_basics(venv_constructor, example_env_list):
|
|
seed = 42
|
|
vector_env = venv_constructor(example_env_list)
|
|
vector_env.reset(seed=seed)
|
|
assert vector_env.np_random_seed == tuple(
|
|
seed + i for i in range(vector_env.num_envs)
|
|
)
|
|
# resetting with seed=None means seed remains the same
|
|
vector_env.reset(seed=None)
|
|
assert vector_env.np_random_seed == tuple(
|
|
seed + i for i in range(vector_env.num_envs)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"venv_constructor",
|
|
[
|
|
SyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=True),
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
],
|
|
)
|
|
def test_random_seeds_set_at_retrieval(venv_constructor, example_env_list):
|
|
vector_env = venv_constructor(example_env_list)
|
|
assert len(set(vector_env.np_random_seed)) == vector_env.num_envs
|
|
# default seed starts at zero. Adjust or remove this test if the default seed changes
|
|
assert vector_env.np_random_seed == tuple(range(vector_env.num_envs))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vectoriser",
|
|
[
|
|
SyncVectorEnv,
|
|
AsyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
],
|
|
ids=["Sync", "Async(shared_memory=True)", "Async(shared_memory=False)"],
|
|
)
|
|
def test_partial_reset(vectoriser):
|
|
envs = vectoriser(
|
|
[lambda: gym.make("CartPole-v1") for _ in range(3)],
|
|
autoreset_mode=AutoresetMode.DISABLED,
|
|
)
|
|
reset_obs, _ = envs.reset(seed=[0, 1, 2])
|
|
|
|
envs.action_space.seed(123)
|
|
envs.step(envs.action_space.sample())
|
|
envs.step(envs.action_space.sample())
|
|
step_obs, *_ = envs.step(envs.action_space.sample())
|
|
|
|
reset_mask_obs, _ = envs.reset(
|
|
seed=[0, 1, 0], options={"reset_mask": np.array([True, True, False])}
|
|
)
|
|
assert np.all(reset_mask_obs[:2] == reset_obs[:2])
|
|
assert np.all(reset_mask_obs[2] == step_obs[2])
|
|
|
|
envs.close()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"vectoriser",
|
|
[
|
|
SyncVectorEnv,
|
|
AsyncVectorEnv,
|
|
partial(AsyncVectorEnv, shared_memory=False),
|
|
],
|
|
ids=["Sync", "Async(shared_memory=True)", "Async(shared_memory=False)"],
|
|
)
|
|
def test_partial_reset_failure(vectoriser):
|
|
envs = vectoriser(
|
|
[lambda: gym.make("CartPole-v1") for _ in range(3)],
|
|
autoreset_mode=AutoresetMode.DISABLED,
|
|
)
|
|
|
|
# Test first reset using a mask
|
|
# with pytest.raises(AssertionError):
|
|
# envs.reset(options={"reset_mask": np.array([True, True, False])})
|
|
|
|
# Reset with all trues
|
|
envs.reset(options={"reset_mask": np.array([True, True, True])})
|
|
|
|
# Reset with mask of an incorrect shape
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"`options['reset_mask': mask]` must have shape `(3,)`, got (1,)"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([True])})
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"options['reset_mask': mask]` must have shape `(3,)`, got (4,)"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([True, True, False, False])})
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"`options['reset_mask': mask]` must have shape `(3,)`, got (1, 3)"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([[True, True, True]])})
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"`options['reset_mask': mask]` must contain a boolean array, got reset_mask=[False False False]"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([False, False, False])})
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"`options['reset_mask': mask]` must have `dtype=np.bool_`, got int64"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([1, 1, 0])})
|
|
with pytest.raises(
|
|
AssertionError,
|
|
match=re.escape(
|
|
"`options['reset_mask': mask]` must have `dtype=np.bool_`, got float64"
|
|
),
|
|
):
|
|
envs.reset(options={"reset_mask": np.array([1.0, 1.0, 0.0])})
|