Files
Gymnasium/gym/envs/mujoco/reacher.py

55 lines
1.7 KiB
Python
Raw Normal View History

2016-04-27 08:00:58 -07:00
import numpy as np
2016-04-27 08:00:58 -07:00
from gym import utils
from gym.envs.mujoco import mujoco_env
2021-07-29 02:26:34 +02:00
2016-04-27 08:00:58 -07:00
class ReacherEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
utils.EzPickle.__init__(self)
2022-05-24 08:47:51 -04:00
mujoco_env.MujocoEnv.__init__(
self, "reacher.xml", 2, mujoco_bindings="mujoco_py"
)
2016-04-27 08:00:58 -07:00
def step(self, a):
2021-07-29 02:26:34 +02:00
vec = self.get_body_com("fingertip") - self.get_body_com("target")
reward_dist = -np.linalg.norm(vec)
reward_ctrl = -np.square(a).sum()
2016-04-27 08:00:58 -07:00
reward = reward_dist + reward_ctrl
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
done = False
return ob, reward, done, dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl)
def viewer_setup(self):
self.viewer.cam.trackbodyid = 0
2016-04-27 08:00:58 -07:00
2016-04-30 22:47:51 -07:00
def reset_model(self):
2021-07-29 15:39:42 -04:00
qpos = (
self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq)
+ self.init_qpos
)
2016-04-27 08:00:58 -07:00
while True:
2021-07-29 02:26:34 +02:00
self.goal = self.np_random.uniform(low=-0.2, high=0.2, size=2)
if np.linalg.norm(self.goal) < 0.2:
break
2016-04-27 08:00:58 -07:00
qpos[-2:] = self.goal
2021-07-29 15:39:42 -04:00
qvel = self.init_qvel + self.np_random.uniform(
low=-0.005, high=0.005, size=self.model.nv
)
2016-04-27 08:00:58 -07:00
qvel[-2:] = 0
2016-04-30 22:47:51 -07:00
self.set_state(qpos, qvel)
2016-04-27 08:00:58 -07:00
return self._get_obs()
def _get_obs(self):
theta = self.sim.data.qpos.flat[:2]
2021-07-29 02:26:34 +02:00
return np.concatenate(
[
np.cos(theta),
np.sin(theta),
self.sim.data.qpos.flat[2:],
self.sim.data.qvel.flat[:2],
self.get_body_com("fingertip") - self.get_body_com("target"),
]
)