2019-08-10 00:19:52 +02:00
|
|
|
import numpy as np
|
2022-03-31 12:50:38 -07:00
|
|
|
import pytest
|
2019-08-10 00:19:52 +02:00
|
|
|
|
2022-09-08 10:10:07 +01:00
|
|
|
import gymnasium
|
|
|
|
from gymnasium.wrappers import TransformReward
|
2019-08-10 00:19:52 +02:00
|
|
|
|
|
|
|
|
2021-09-25 20:00:28 +02:00
|
|
|
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
|
2019-08-10 00:19:52 +02:00
|
|
|
def test_transform_reward(env_id):
|
|
|
|
# use case #1: scale
|
|
|
|
scales = [0.1, 200]
|
|
|
|
for scale in scales:
|
2022-09-08 10:10:07 +01:00
|
|
|
env = gymnasium.make(env_id, disable_env_checker=True)
|
2022-06-16 14:29:13 +01:00
|
|
|
wrapped_env = TransformReward(
|
2022-09-08 10:10:07 +01:00
|
|
|
gymnasium.make(env_id, disable_env_checker=True), lambda r: scale * r
|
2022-06-16 14:29:13 +01:00
|
|
|
)
|
2019-08-10 00:19:52 +02:00
|
|
|
action = env.action_space.sample()
|
|
|
|
|
2021-12-08 22:14:15 +01:00
|
|
|
env.reset(seed=0)
|
|
|
|
wrapped_env.reset(seed=0)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
2022-08-30 19:41:59 +05:30
|
|
|
_, reward, _, _, _ = env.step(action)
|
|
|
|
_, wrapped_reward, _, _, _ = wrapped_env.step(action)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
2021-07-29 02:26:34 +02:00
|
|
|
assert wrapped_reward == scale * reward
|
2022-09-03 23:39:23 +01:00
|
|
|
del env, wrapped_env
|
2019-08-10 00:19:52 +02:00
|
|
|
|
|
|
|
# use case #2: clip
|
|
|
|
min_r = -0.0005
|
|
|
|
max_r = 0.0002
|
2022-09-08 10:10:07 +01:00
|
|
|
env = gymnasium.make(env_id, disable_env_checker=True)
|
2022-06-16 14:29:13 +01:00
|
|
|
wrapped_env = TransformReward(
|
2022-09-08 10:11:31 +01:00
|
|
|
gymnasium.make(env_id, disable_env_checker=True),
|
|
|
|
lambda r: np.clip(r, min_r, max_r),
|
2022-06-16 14:29:13 +01:00
|
|
|
)
|
2019-08-10 00:19:52 +02:00
|
|
|
action = env.action_space.sample()
|
|
|
|
|
2021-12-08 22:14:15 +01:00
|
|
|
env.reset(seed=0)
|
|
|
|
wrapped_env.reset(seed=0)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
2022-08-30 19:41:59 +05:30
|
|
|
_, reward, _, _, _ = env.step(action)
|
|
|
|
_, wrapped_reward, _, _, _ = wrapped_env.step(action)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
|
|
|
assert abs(wrapped_reward) < abs(reward)
|
|
|
|
assert wrapped_reward == -0.0005 or wrapped_reward == 0.0002
|
|
|
|
del env, wrapped_env
|
|
|
|
|
|
|
|
# use case #3: sign
|
2022-09-08 10:10:07 +01:00
|
|
|
env = gymnasium.make(env_id, disable_env_checker=True)
|
2022-06-16 14:29:13 +01:00
|
|
|
wrapped_env = TransformReward(
|
2022-09-08 10:10:07 +01:00
|
|
|
gymnasium.make(env_id, disable_env_checker=True), lambda r: np.sign(r)
|
2022-06-16 14:29:13 +01:00
|
|
|
)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
2021-12-08 22:14:15 +01:00
|
|
|
env.reset(seed=0)
|
|
|
|
wrapped_env.reset(seed=0)
|
2019-08-10 00:19:52 +02:00
|
|
|
|
|
|
|
for _ in range(1000):
|
|
|
|
action = env.action_space.sample()
|
2022-08-30 19:41:59 +05:30
|
|
|
_, wrapped_reward, terminated, truncated, _ = wrapped_env.step(action)
|
2019-08-10 00:19:52 +02:00
|
|
|
assert wrapped_reward in [-1.0, 0.0, 1.0]
|
2022-08-30 19:41:59 +05:30
|
|
|
if terminated or truncated:
|
2019-08-10 00:19:52 +02:00
|
|
|
break
|
|
|
|
del env, wrapped_env
|