Files
Gymnasium/tests/wrappers/test_transform_reward.py
pseudo-rnd-thoughts 47ba48b611 Rename to gymnasium
2022-09-08 10:11:31 +01:00

64 lines
1.8 KiB
Python

import numpy as np
import pytest
import gymnasium
from gymnasium.wrappers import TransformReward
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
def test_transform_reward(env_id):
# use case #1: scale
scales = [0.1, 200]
for scale in scales:
env = gymnasium.make(env_id, disable_env_checker=True)
wrapped_env = TransformReward(
gymnasium.make(env_id, disable_env_checker=True), lambda r: scale * r
)
action = env.action_space.sample()
env.reset(seed=0)
wrapped_env.reset(seed=0)
_, reward, _, _, _ = env.step(action)
_, wrapped_reward, _, _, _ = wrapped_env.step(action)
assert wrapped_reward == scale * reward
del env, wrapped_env
# use case #2: clip
min_r = -0.0005
max_r = 0.0002
env = gymnasium.make(env_id, disable_env_checker=True)
wrapped_env = TransformReward(
gymnasium.make(env_id, disable_env_checker=True),
lambda r: np.clip(r, min_r, max_r),
)
action = env.action_space.sample()
env.reset(seed=0)
wrapped_env.reset(seed=0)
_, reward, _, _, _ = env.step(action)
_, wrapped_reward, _, _, _ = wrapped_env.step(action)
assert abs(wrapped_reward) < abs(reward)
assert wrapped_reward == -0.0005 or wrapped_reward == 0.0002
del env, wrapped_env
# use case #3: sign
env = gymnasium.make(env_id, disable_env_checker=True)
wrapped_env = TransformReward(
gymnasium.make(env_id, disable_env_checker=True), lambda r: np.sign(r)
)
env.reset(seed=0)
wrapped_env.reset(seed=0)
for _ in range(1000):
action = env.action_space.sample()
_, wrapped_reward, terminated, truncated, _ = wrapped_env.step(action)
assert wrapped_reward in [-1.0, 0.0, 1.0]
if terminated or truncated:
break
del env, wrapped_env