Files
Gymnasium/docs/api/vector.md

88 lines
2.2 KiB
Markdown
Raw Normal View History

2022-09-13 20:27:34 +01:00
---
title: Vector
---
# Vector
```{eval-rst}
.. autofunction:: gymnasium.vector.make
```
## VectorEnv
```{eval-rst}
.. attribute:: gymnasium.vector.VectorEnv.action_space
The (batched) action space. The input actions of `step` must be valid elements of `action_space`.::
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.action_space
MultiDiscrete([2 2 2])
.. attribute:: gymnasium.vector.VectorEnv.observation_space
The (batched) observation space. The observations returned by `reset` and `step` are valid elements of `observation_space`.::
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.observation_space
Box([[-4.8 ...]], [[4.8 ...]], (3, 4), float32)
.. attribute:: gymnasium.vector.VectorEnv.single_action_space
The action space of an environment copy.::
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.single_action_space
Discrete(2)
.. attribute:: gymnasium.vector.VectorEnv.single_observation_space
The observation space of an environment copy.::
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.single_action_space
Box([-4.8 ...], [4.8 ...], (4,), float32)
```
### Reset
```{eval-rst}
.. automethod:: gymnasium.vector.VectorEnv.reset
```
```python
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.reset()
(array([[-0.02240574, -0.03439831, -0.03904812, 0.02810693],
[ 0.01586068, 0.01929009, 0.02394426, 0.04016077],
[-0.01314174, 0.03893502, -0.02400815, 0.0038326 ]],
dtype=float32), {})
```
### Step
```{eval-rst}
.. automethod:: gymnasium.vector.VectorEnv.step
```
```python
>>> envs = gymnasium.vector.make("CartPole-v1", num_envs=3)
>>> envs.reset()
>>> actions = np.array([1, 0, 1])
>>> observations, rewards, dones, infos = envs.step(actions)
>>> observations
array([[ 0.00122802, 0.16228443, 0.02521779, -0.23700266],
[ 0.00788269, -0.17490888, 0.03393489, 0.31735462],
[ 0.04918966, 0.19421194, 0.02938497, -0.29495203]],
dtype=float32)
>>> rewards
array([1., 1., 1.])
>>> dones
array([False, False, False])
>>> infos
{}
```