Files
Gymnasium/tests/wrappers/test_transform_reward.py

64 lines
1.6 KiB
Python
Raw Normal View History

import pytest
import numpy as np
import gym
from gym.wrappers import TransformReward
@pytest.mark.parametrize("env_id", ["CartPole-v1", "Pendulum-v1"])
def test_transform_reward(env_id):
# use case #1: scale
scales = [0.1, 200]
for scale in scales:
env = gym.make(env_id)
2021-07-29 02:26:34 +02:00
wrapped_env = TransformReward(gym.make(env_id), lambda r: scale * r)
action = env.action_space.sample()
env.seed(0)
env.reset()
wrapped_env.seed(0)
wrapped_env.reset()
_, reward, _, _ = env.step(action)
_, wrapped_reward, _, _ = wrapped_env.step(action)
2021-07-29 02:26:34 +02:00
assert wrapped_reward == scale * reward
del env, wrapped_env
# use case #2: clip
min_r = -0.0005
max_r = 0.0002
env = gym.make(env_id)
wrapped_env = TransformReward(gym.make(env_id), lambda r: np.clip(r, min_r, max_r))
action = env.action_space.sample()
env.seed(0)
env.reset()
wrapped_env.seed(0)
wrapped_env.reset()
_, reward, _, _ = env.step(action)
_, wrapped_reward, _, _ = wrapped_env.step(action)
assert abs(wrapped_reward) < abs(reward)
assert wrapped_reward == -0.0005 or wrapped_reward == 0.0002
del env, wrapped_env
# use case #3: sign
env = gym.make(env_id)
wrapped_env = TransformReward(gym.make(env_id), lambda r: np.sign(r))
env.seed(0)
env.reset()
wrapped_env.seed(0)
wrapped_env.reset()
for _ in range(1000):
action = env.action_space.sample()
_, wrapped_reward, done, _ = wrapped_env.step(action)
assert wrapped_reward in [-1.0, 0.0, 1.0]
if done:
break
del env, wrapped_env