Files
Gymnasium/tests/vector/test_async_vector_env.py

238 lines
8.2 KiB
Python
Raw Normal View History

import pytest
import numpy as np
from multiprocessing import TimeoutError
from gym.spaces import Box, Tuple, Discrete, MultiDiscrete
2021-07-29 02:26:34 +02:00
from gym.error import AlreadyPendingCallError, NoAsyncCallError, ClosedEnvironmentError
from tests.vector.utils import (
2021-07-29 02:26:34 +02:00
CustomSpace,
make_env,
make_slow_env,
make_custom_space_env,
)
from gym.vector.async_vector_env import AsyncVectorEnv
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_create_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
finally:
env.close()
assert env.num_envs == 8
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_async_vector_env(shared_memory, use_single_action_space):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(dones, np.ndarray)
assert dones.dtype == np.bool_
assert dones.ndim == 1
assert dones.size == 8
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_copy_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
2021-07-29 02:26:34 +02:00
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True)
observations = env.reset()
2022-01-10 23:42:26 -05:00
observations[0] = 0
finally:
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_no_copy_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
2021-07-29 02:26:34 +02:00
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False)
observations = env.reset()
2022-01-10 23:42:26 -05:00
observations[0] = 0
finally:
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.3, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.reset_async()
observations = env.reset_wait(timeout=0.1)
finally:
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_timeout_async_vector_env(shared_memory):
2021-07-29 02:26:34 +02:00
env_fns = [make_slow_env(0.0, i) for i in range(4)]
with pytest.raises(TimeoutError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
env.step_async([0.1, 0.1, 0.3, 0.1])
observations, rewards, dones, _ = env.step_wait(timeout=0.1)
finally:
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_out_of_order_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset_wait()
except NoAsyncCallError as exception:
2021-07-29 02:26:34 +02:00
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
observations = env.reset()
env.step_async(actions)
env.reset_async()
except NoAsyncCallError as exception:
2021-07-29 02:26:34 +02:00
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.filterwarnings("ignore::UserWarning")
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_out_of_order_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(NoAsyncCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
observations = env.reset()
observations, rewards, dones, infos = env.step_wait()
except AlreadyPendingCallError as exception:
2021-07-29 02:26:34 +02:00
assert exception.name == "step"
raise
finally:
env.close(terminate=True)
with pytest.raises(AlreadyPendingCallError):
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
actions = env.action_space.sample()
env.reset_async()
env.step_async(actions)
except AlreadyPendingCallError as exception:
2021-07-29 02:26:34 +02:00
assert exception.name == "reset"
raise
finally:
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_already_closed_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(ClosedEnvironmentError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close()
observations = env.reset()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_check_spaces_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close(terminate=True)
def test_custom_space_async_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
try:
env = AsyncVectorEnv(env_fns, shared_memory=False)
reset_observations = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
2021-07-29 02:26:34 +02:00
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
2021-07-29 02:26:34 +02:00
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
2021-07-29 02:26:34 +02:00
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_custom_space_async_vector_env_shared_memory():
env_fns = [make_custom_space_env(i) for i in range(4)]
with pytest.raises(ValueError):
env = AsyncVectorEnv(env_fns, shared_memory=True)
env.close(terminate=True)