Files
Gymnasium/tests/vector/test_sync_vector_env.py

107 lines
3.4 KiB
Python
Raw Normal View History

import pytest
import numpy as np
from gym.spaces import Box, Tuple, Discrete, MultiDiscrete
from tests.vector.utils import CustomSpace, make_env, make_custom_space_env
from gym.vector.sync_vector_env import SyncVectorEnv
2021-07-29 02:26:34 +02:00
def test_create_sync_vector_env():
2022-01-10 23:42:26 -05:00
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
try:
env = SyncVectorEnv(env_fns)
finally:
env.close()
assert env.num_envs == 8
def test_reset_sync_vector_env():
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
try:
env = SyncVectorEnv(env_fns)
observations = env.reset()
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_sync_vector_env(use_single_action_space):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
try:
env = SyncVectorEnv(env_fns)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
2022-01-10 23:42:26 -05:00
assert isinstance(env.observation_space, MultiDiscrete)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(dones, np.ndarray)
assert dones.dtype == np.bool_
assert dones.ndim == 1
assert dones.size == 8
def test_check_spaces_sync_vector_env():
2022-01-10 23:42:26 -05:00
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = SyncVectorEnv(env_fns)
env.close()
def test_custom_space_sync_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
try:
env = SyncVectorEnv(env_fns)
reset_observations = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
2021-07-29 02:26:34 +02:00
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, dones, _ = env.step(actions)
finally:
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
2021-07-29 02:26:34 +02:00
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
2021-07-29 02:26:34 +02:00
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)