Files
Gymnasium/gym/vector/utils/numpy_utils.py

113 lines
3.9 KiB
Python
Raw Normal View History

import numpy as np
from gym.spaces import Tuple, Dict
from gym.vector.utils.spaces import _BaseGymSpaces
from collections import OrderedDict
__all__ = ['concatenate', 'create_empty_array']
def concatenate(items, out, space):
"""Concatenate multiple samples from space into a single object.
Parameters
----------
items : iterable of samples of `space`
Samples to be concatenated.
out : tuple, dict, or `np.ndarray`
The output object. This object is a (possibly nested) numpy array.
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
Returns
-------
out : tuple, dict, or `np.ndarray`
The output object. This object is a (possibly nested) numpy array.
Example
-------
>>> from gym.spaces import Box
>>> space = Box(low=0, high=1, shape=(3,), dtype=np.float32)
>>> out = np.zeros((2, 3), dtype=np.float32)
>>> items = [space.sample() for _ in range(2)]
>>> concatenate(items, out, space)
array([[0.6348213 , 0.28607962, 0.60760117],
[0.87383074, 0.192658 , 0.2148103 ]], dtype=float32)
"""
assert isinstance(items, (list, tuple))
if isinstance(space, _BaseGymSpaces):
return concatenate_base(items, out, space)
elif isinstance(space, Tuple):
return concatenate_tuple(items, out, space)
elif isinstance(space, Dict):
return concatenate_dict(items, out, space)
else:
raise NotImplementedError()
def concatenate_base(items, out, space):
return np.stack(items, axis=0, out=out)
def concatenate_tuple(items, out, space):
return tuple(concatenate([item[i] for item in items],
out[i], subspace) for (i, subspace) in enumerate(space.spaces))
def concatenate_dict(items, out, space):
return OrderedDict([(key, concatenate([item[key] for item in items],
out[key], subspace)) for (key, subspace) in space.spaces.items()])
def create_empty_array(space, n=1, fn=np.zeros):
"""Create an empty (possibly nested) numpy array.
Parameters
----------
space : `gym.spaces.Space` instance
Observation space of a single environment in the vectorized environment.
n : int
Number of environments in the vectorized environment. If `None`, creates
an empty sample from `space`.
fn : callable
Function to apply when creating the empty numpy array. Examples of such
functions are `np.empty` or `np.zeros`.
Returns
-------
out : tuple, dict, or `np.ndarray`
The output object. This object is a (possibly nested) numpy array.
Example
-------
>>> from gym.spaces import Box, Dict
>>> space = Dict({
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
>>> create_empty_array(space, n=2, fn=np.zeros)
OrderedDict([('position', array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)),
('velocity', array([[0., 0.],
[0., 0.]], dtype=float32))])
"""
if isinstance(space, _BaseGymSpaces):
return create_empty_array_base(space, n=n, fn=fn)
elif isinstance(space, Tuple):
return create_empty_array_tuple(space, n=n, fn=fn)
elif isinstance(space, Dict):
return create_empty_array_dict(space, n=n, fn=fn)
else:
raise NotImplementedError()
def create_empty_array_base(space, n=1, fn=np.zeros):
shape = space.shape if (n is None) else (n,) + space.shape
return fn(shape, dtype=space.dtype)
def create_empty_array_tuple(space, n=1, fn=np.zeros):
return tuple(create_empty_array(subspace, n=n, fn=fn)
for subspace in space.spaces)
def create_empty_array_dict(space, n=1, fn=np.zeros):
return OrderedDict([(key, create_empty_array(subspace, n=n, fn=fn))
for (key, subspace) in space.spaces.items()])