mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 06:07:08 +00:00
* Initial version of vectorized environments * Raise an exception in the main process if child process raises an exception * Add list of exposed functions in vector module * Use deepcopy instead of np.copy * Add documentation for vector utils * Add tests for copy in AsyncVectorEnv * Add example in documentation for batch_space * Add cloudpickle dependency in setup.py * Fix __del__ in VectorEnv * Check if all observation spaces are equal in AsyncVectorEnv * Check if all observation spaces are equal in SyncVectorEnv * Fix spaces non equality in SyncVectorEnv for Python 2 * Handle None parameter in create_empty_array * Fix check_observation_space with spaces equality * Raise an exception when operations are out of order in AsyncVectorEnv * Add version requirement for cloudpickle * Use a state instead of binary flags in AsyncVectorEnv * Use numpy.zeros when initializing observations in vectorized environments * Remove poll from public API in AsyncVectorEnv * Remove close_extras from VectorEnv * Add test between AsyncVectorEnv and SyncVectorEnv * Remove close in check_observation_space * Add documentation for seed and close * Refactor exceptions for AsyncVectorEnv * Close pipes if the environment raises an error * Add tests for out of order operations * Change default argument in create_empty_array to np.zeros * Add get_attr and set_attr methods to VectorEnv * Improve consistency in SyncVectorEnv
113 lines
3.9 KiB
Python
113 lines
3.9 KiB
Python
import numpy as np
|
|
|
|
from gym.spaces import Tuple, Dict
|
|
from gym.vector.utils.spaces import _BaseGymSpaces
|
|
from collections import OrderedDict
|
|
|
|
__all__ = ['concatenate', 'create_empty_array']
|
|
|
|
def concatenate(items, out, space):
|
|
"""Concatenate multiple samples from space into a single object.
|
|
|
|
Parameters
|
|
----------
|
|
items : iterable of samples of `space`
|
|
Samples to be concatenated.
|
|
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
Returns
|
|
-------
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
Example
|
|
-------
|
|
>>> from gym.spaces import Box
|
|
>>> space = Box(low=0, high=1, shape=(3,), dtype=np.float32)
|
|
>>> out = np.zeros((2, 3), dtype=np.float32)
|
|
>>> items = [space.sample() for _ in range(2)]
|
|
>>> concatenate(items, out, space)
|
|
array([[0.6348213 , 0.28607962, 0.60760117],
|
|
[0.87383074, 0.192658 , 0.2148103 ]], dtype=float32)
|
|
"""
|
|
assert isinstance(items, (list, tuple))
|
|
if isinstance(space, _BaseGymSpaces):
|
|
return concatenate_base(items, out, space)
|
|
elif isinstance(space, Tuple):
|
|
return concatenate_tuple(items, out, space)
|
|
elif isinstance(space, Dict):
|
|
return concatenate_dict(items, out, space)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def concatenate_base(items, out, space):
|
|
return np.stack(items, axis=0, out=out)
|
|
|
|
def concatenate_tuple(items, out, space):
|
|
return tuple(concatenate([item[i] for item in items],
|
|
out[i], subspace) for (i, subspace) in enumerate(space.spaces))
|
|
|
|
def concatenate_dict(items, out, space):
|
|
return OrderedDict([(key, concatenate([item[key] for item in items],
|
|
out[key], subspace)) for (key, subspace) in space.spaces.items()])
|
|
|
|
|
|
def create_empty_array(space, n=1, fn=np.zeros):
|
|
"""Create an empty (possibly nested) numpy array.
|
|
|
|
Parameters
|
|
----------
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
n : int
|
|
Number of environments in the vectorized environment. If `None`, creates
|
|
an empty sample from `space`.
|
|
|
|
fn : callable
|
|
Function to apply when creating the empty numpy array. Examples of such
|
|
functions are `np.empty` or `np.zeros`.
|
|
|
|
Returns
|
|
-------
|
|
out : tuple, dict, or `np.ndarray`
|
|
The output object. This object is a (possibly nested) numpy array.
|
|
|
|
Example
|
|
-------
|
|
>>> from gym.spaces import Box, Dict
|
|
>>> space = Dict({
|
|
... 'position': Box(low=0, high=1, shape=(3,), dtype=np.float32),
|
|
... 'velocity': Box(low=0, high=1, shape=(2,), dtype=np.float32)})
|
|
>>> create_empty_array(space, n=2, fn=np.zeros)
|
|
OrderedDict([('position', array([[0., 0., 0.],
|
|
[0., 0., 0.]], dtype=float32)),
|
|
('velocity', array([[0., 0.],
|
|
[0., 0.]], dtype=float32))])
|
|
"""
|
|
if isinstance(space, _BaseGymSpaces):
|
|
return create_empty_array_base(space, n=n, fn=fn)
|
|
elif isinstance(space, Tuple):
|
|
return create_empty_array_tuple(space, n=n, fn=fn)
|
|
elif isinstance(space, Dict):
|
|
return create_empty_array_dict(space, n=n, fn=fn)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def create_empty_array_base(space, n=1, fn=np.zeros):
|
|
shape = space.shape if (n is None) else (n,) + space.shape
|
|
return fn(shape, dtype=space.dtype)
|
|
|
|
def create_empty_array_tuple(space, n=1, fn=np.zeros):
|
|
return tuple(create_empty_array(subspace, n=n, fn=fn)
|
|
for subspace in space.spaces)
|
|
|
|
def create_empty_array_dict(space, n=1, fn=np.zeros):
|
|
return OrderedDict([(key, create_empty_array(subspace, n=n, fn=fn))
|
|
for (key, subspace) in space.spaces.items()])
|