mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-02 06:16:32 +00:00
151 lines
5.4 KiB
Python
151 lines
5.4 KiB
Python
![]() |
import numpy as np
|
||
|
from multiprocessing import Array
|
||
|
from ctypes import c_bool
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
from gym import logger
|
||
|
from gym.spaces import Tuple, Dict
|
||
|
from gym.vector.utils.spaces import _BaseGymSpaces
|
||
|
|
||
|
__all__ = [
|
||
|
'create_shared_memory',
|
||
|
'read_from_shared_memory',
|
||
|
'write_to_shared_memory'
|
||
|
]
|
||
|
|
||
|
def create_shared_memory(space, n=1):
|
||
|
"""Create a shared memory object, to be shared across processes. This
|
||
|
eventually contains the observations from the vectorized environment.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
space : `gym.spaces.Space` instance
|
||
|
Observation space of a single environment in the vectorized environment.
|
||
|
|
||
|
n : int
|
||
|
Number of environments in the vectorized environment (i.e. the number
|
||
|
of processes).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
||
|
Shared object across processes.
|
||
|
"""
|
||
|
if isinstance(space, _BaseGymSpaces):
|
||
|
return create_base_shared_memory(space, n=n)
|
||
|
elif isinstance(space, Tuple):
|
||
|
return create_tuple_shared_memory(space, n=n)
|
||
|
elif isinstance(space, Dict):
|
||
|
return create_dict_shared_memory(space, n=n)
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def create_base_shared_memory(space, n=1):
|
||
|
dtype = space.dtype.char
|
||
|
if dtype in '?':
|
||
|
dtype = c_bool
|
||
|
return Array(dtype, n * int(np.prod(space.shape)))
|
||
|
|
||
|
def create_tuple_shared_memory(space, n=1):
|
||
|
return tuple(create_shared_memory(subspace, n=n)
|
||
|
for subspace in space.spaces)
|
||
|
|
||
|
def create_dict_shared_memory(space, n=1):
|
||
|
return OrderedDict([(key, create_shared_memory(subspace, n=n))
|
||
|
for (key, subspace) in space.spaces.items()])
|
||
|
|
||
|
|
||
|
def read_from_shared_memory(shared_memory, space, n=1):
|
||
|
"""Read the batch of observations from shared memory as a numpy array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
||
|
Shared object across processes. This contains the observations from the
|
||
|
vectorized environment. This object is created with `create_shared_memory`.
|
||
|
|
||
|
space : `gym.spaces.Space` instance
|
||
|
Observation space of a single environment in the vectorized environment.
|
||
|
|
||
|
n : int
|
||
|
Number of environments in the vectorized environment (i.e. the number
|
||
|
of processes).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
observations : dict, tuple or `np.ndarray` instance
|
||
|
Batch of observations as a (possibly nested) numpy array.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The numpy array objects returned by `read_from_shared_memory` shares the
|
||
|
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
|
||
|
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
|
||
|
"""
|
||
|
if isinstance(space, _BaseGymSpaces):
|
||
|
return read_base_from_shared_memory(shared_memory, space, n=n)
|
||
|
elif isinstance(space, Tuple):
|
||
|
return read_tuple_from_shared_memory(shared_memory, space, n=n)
|
||
|
elif isinstance(space, Dict):
|
||
|
return read_dict_from_shared_memory(shared_memory, space, n=n)
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def read_base_from_shared_memory(shared_memory, space, n=1):
|
||
|
return np.frombuffer(shared_memory.get_obj(),
|
||
|
dtype=space.dtype).reshape((n,) + space.shape)
|
||
|
|
||
|
def read_tuple_from_shared_memory(shared_memory, space, n=1):
|
||
|
return tuple(read_from_shared_memory(memory, subspace, n=n)
|
||
|
for (memory, subspace) in zip(shared_memory, space.spaces))
|
||
|
|
||
|
def read_dict_from_shared_memory(shared_memory, space, n=1):
|
||
|
return OrderedDict([(key, read_from_shared_memory(memory, subspace, n=n))
|
||
|
for ((key, memory), subspace) in zip(shared_memory.items(),
|
||
|
space.spaces.values())])
|
||
|
|
||
|
|
||
|
def write_to_shared_memory(index, value, shared_memory, space):
|
||
|
"""Write the observation of a single environment into shared memory.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
index : int
|
||
|
Index of the environment (must be in `[0, num_envs)`).
|
||
|
|
||
|
value : sample from `space`
|
||
|
Observation of the single environment to write to shared memory.
|
||
|
|
||
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
||
|
Shared object across processes. This contains the observations from the
|
||
|
vectorized environment. This object is created with `create_shared_memory`.
|
||
|
|
||
|
space : `gym.spaces.Space` instance
|
||
|
Observation space of a single environment in the vectorized environment.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
`None`
|
||
|
"""
|
||
|
if isinstance(space, _BaseGymSpaces):
|
||
|
write_base_to_shared_memory(index, value, shared_memory, space)
|
||
|
elif isinstance(space, Tuple):
|
||
|
write_tuple_to_shared_memory(index, value, shared_memory, space)
|
||
|
elif isinstance(space, Dict):
|
||
|
write_dict_to_shared_memory(index, value, shared_memory, space)
|
||
|
else:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
def write_base_to_shared_memory(index, value, shared_memory, space):
|
||
|
size = int(np.prod(space.shape))
|
||
|
shared_memory[index * size:(index + 1) * size] = np.asarray(value,
|
||
|
dtype=space.dtype).flatten()
|
||
|
|
||
|
def write_tuple_to_shared_memory(index, values, shared_memory, space):
|
||
|
for value, memory, subspace in zip(values, shared_memory, space.spaces):
|
||
|
write_to_shared_memory(index, value, memory, subspace)
|
||
|
|
||
|
def write_dict_to_shared_memory(index, values, shared_memory, space):
|
||
|
for key, value in values.items():
|
||
|
write_to_shared_memory(index, value, shared_memory[key], space.spaces[key])
|