mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 22:11:25 +00:00
* Initial version of vectorized environments * Raise an exception in the main process if child process raises an exception * Add list of exposed functions in vector module * Use deepcopy instead of np.copy * Add documentation for vector utils * Add tests for copy in AsyncVectorEnv * Add example in documentation for batch_space * Add cloudpickle dependency in setup.py * Fix __del__ in VectorEnv * Check if all observation spaces are equal in AsyncVectorEnv * Check if all observation spaces are equal in SyncVectorEnv * Fix spaces non equality in SyncVectorEnv for Python 2 * Handle None parameter in create_empty_array * Fix check_observation_space with spaces equality * Raise an exception when operations are out of order in AsyncVectorEnv * Add version requirement for cloudpickle * Use a state instead of binary flags in AsyncVectorEnv * Use numpy.zeros when initializing observations in vectorized environments * Remove poll from public API in AsyncVectorEnv * Remove close_extras from VectorEnv * Add test between AsyncVectorEnv and SyncVectorEnv * Remove close in check_observation_space * Add documentation for seed and close * Refactor exceptions for AsyncVectorEnv * Close pipes if the environment raises an error * Add tests for out of order operations * Change default argument in create_empty_array to np.zeros * Add get_attr and set_attr methods to VectorEnv * Improve consistency in SyncVectorEnv
151 lines
5.4 KiB
Python
151 lines
5.4 KiB
Python
import numpy as np
|
|
from multiprocessing import Array
|
|
from ctypes import c_bool
|
|
from collections import OrderedDict
|
|
|
|
from gym import logger
|
|
from gym.spaces import Tuple, Dict
|
|
from gym.vector.utils.spaces import _BaseGymSpaces
|
|
|
|
__all__ = [
|
|
'create_shared_memory',
|
|
'read_from_shared_memory',
|
|
'write_to_shared_memory'
|
|
]
|
|
|
|
def create_shared_memory(space, n=1):
|
|
"""Create a shared memory object, to be shared across processes. This
|
|
eventually contains the observations from the vectorized environment.
|
|
|
|
Parameters
|
|
----------
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
n : int
|
|
Number of environments in the vectorized environment (i.e. the number
|
|
of processes).
|
|
|
|
Returns
|
|
-------
|
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
|
Shared object across processes.
|
|
"""
|
|
if isinstance(space, _BaseGymSpaces):
|
|
return create_base_shared_memory(space, n=n)
|
|
elif isinstance(space, Tuple):
|
|
return create_tuple_shared_memory(space, n=n)
|
|
elif isinstance(space, Dict):
|
|
return create_dict_shared_memory(space, n=n)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def create_base_shared_memory(space, n=1):
|
|
dtype = space.dtype.char
|
|
if dtype in '?':
|
|
dtype = c_bool
|
|
return Array(dtype, n * int(np.prod(space.shape)))
|
|
|
|
def create_tuple_shared_memory(space, n=1):
|
|
return tuple(create_shared_memory(subspace, n=n)
|
|
for subspace in space.spaces)
|
|
|
|
def create_dict_shared_memory(space, n=1):
|
|
return OrderedDict([(key, create_shared_memory(subspace, n=n))
|
|
for (key, subspace) in space.spaces.items()])
|
|
|
|
|
|
def read_from_shared_memory(shared_memory, space, n=1):
|
|
"""Read the batch of observations from shared memory as a numpy array.
|
|
|
|
Parameters
|
|
----------
|
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
|
Shared object across processes. This contains the observations from the
|
|
vectorized environment. This object is created with `create_shared_memory`.
|
|
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
n : int
|
|
Number of environments in the vectorized environment (i.e. the number
|
|
of processes).
|
|
|
|
Returns
|
|
-------
|
|
observations : dict, tuple or `np.ndarray` instance
|
|
Batch of observations as a (possibly nested) numpy array.
|
|
|
|
Notes
|
|
-----
|
|
The numpy array objects returned by `read_from_shared_memory` shares the
|
|
memory of `shared_memory`. Any changes to `shared_memory` are forwarded
|
|
to `observations`, and vice-versa. To avoid any side-effect, use `np.copy`.
|
|
"""
|
|
if isinstance(space, _BaseGymSpaces):
|
|
return read_base_from_shared_memory(shared_memory, space, n=n)
|
|
elif isinstance(space, Tuple):
|
|
return read_tuple_from_shared_memory(shared_memory, space, n=n)
|
|
elif isinstance(space, Dict):
|
|
return read_dict_from_shared_memory(shared_memory, space, n=n)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def read_base_from_shared_memory(shared_memory, space, n=1):
|
|
return np.frombuffer(shared_memory.get_obj(),
|
|
dtype=space.dtype).reshape((n,) + space.shape)
|
|
|
|
def read_tuple_from_shared_memory(shared_memory, space, n=1):
|
|
return tuple(read_from_shared_memory(memory, subspace, n=n)
|
|
for (memory, subspace) in zip(shared_memory, space.spaces))
|
|
|
|
def read_dict_from_shared_memory(shared_memory, space, n=1):
|
|
return OrderedDict([(key, read_from_shared_memory(memory, subspace, n=n))
|
|
for ((key, memory), subspace) in zip(shared_memory.items(),
|
|
space.spaces.values())])
|
|
|
|
|
|
def write_to_shared_memory(index, value, shared_memory, space):
|
|
"""Write the observation of a single environment into shared memory.
|
|
|
|
Parameters
|
|
----------
|
|
index : int
|
|
Index of the environment (must be in `[0, num_envs)`).
|
|
|
|
value : sample from `space`
|
|
Observation of the single environment to write to shared memory.
|
|
|
|
shared_memory : dict, tuple, or `multiprocessing.Array` instance
|
|
Shared object across processes. This contains the observations from the
|
|
vectorized environment. This object is created with `create_shared_memory`.
|
|
|
|
space : `gym.spaces.Space` instance
|
|
Observation space of a single environment in the vectorized environment.
|
|
|
|
Returns
|
|
-------
|
|
`None`
|
|
"""
|
|
if isinstance(space, _BaseGymSpaces):
|
|
write_base_to_shared_memory(index, value, shared_memory, space)
|
|
elif isinstance(space, Tuple):
|
|
write_tuple_to_shared_memory(index, value, shared_memory, space)
|
|
elif isinstance(space, Dict):
|
|
write_dict_to_shared_memory(index, value, shared_memory, space)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def write_base_to_shared_memory(index, value, shared_memory, space):
|
|
size = int(np.prod(space.shape))
|
|
shared_memory[index * size:(index + 1) * size] = np.asarray(value,
|
|
dtype=space.dtype).flatten()
|
|
|
|
def write_tuple_to_shared_memory(index, values, shared_memory, space):
|
|
for value, memory, subspace in zip(values, shared_memory, space.spaces):
|
|
write_to_shared_memory(index, value, memory, subspace)
|
|
|
|
def write_dict_to_shared_memory(index, values, shared_memory, space):
|
|
for key, value in values.items():
|
|
write_to_shared_memory(index, value, shared_memory[key], space.spaces[key])
|