Files
Gymnasium/gym/spaces/utils.py

158 lines
5.8 KiB
Python
Raw Normal View History

from collections import OrderedDict
import numpy as np
from gym.spaces import Box
from gym.spaces import Discrete
from gym.spaces import MultiDiscrete
from gym.spaces import MultiBinary
from gym.spaces import Tuple
from gym.spaces import Dict
def flatdim(space):
"""Return the number of dimensions a flattened equivalent of this space
would have.
Accepts a space and returns an integer. Raises ``NotImplementedError`` if
the space is not defined in ``gym.spaces``.
"""
if isinstance(space, Box):
return int(np.prod(space.shape))
elif isinstance(space, Discrete):
return int(space.n)
elif isinstance(space, Tuple):
return int(sum([flatdim(s) for s in space.spaces]))
elif isinstance(space, Dict):
return int(sum([flatdim(s) for s in space.spaces.values()]))
elif isinstance(space, MultiBinary):
return int(space.n)
elif isinstance(space, MultiDiscrete):
return int(np.prod(space.shape))
else:
raise NotImplementedError
def flatten(space, x):
"""Flatten a data point from a space.
This is useful when e.g. points from spaces must be passed to a neural
network, which only understands flat arrays of floats.
Accepts a space and a point from that space. Always returns a 1D array.
Raises ``NotImplementedError`` if the space is not defined in
``gym.spaces``.
"""
if isinstance(space, Box):
return np.asarray(x, dtype=space.dtype).flatten()
elif isinstance(space, Discrete):
onehot = np.zeros(space.n, dtype=space.dtype)
onehot[x] = 1
return onehot
elif isinstance(space, Tuple):
2021-07-29 12:42:48 -04:00
return np.concatenate([flatten(s, x_part) for x_part, s in zip(x, space.spaces)])
elif isinstance(space, Dict):
2021-07-29 02:26:34 +02:00
return np.concatenate([flatten(s, x[key]) for key, s in space.spaces.items()])
elif isinstance(space, MultiBinary):
return np.asarray(x, dtype=space.dtype).flatten()
elif isinstance(space, MultiDiscrete):
return np.asarray(x, dtype=space.dtype).flatten()
else:
raise NotImplementedError
def unflatten(space, x):
"""Unflatten a data point from a space.
This reverses the transformation applied by ``flatten()``. You must ensure
that the ``space`` argument is the same as for the ``flatten()`` call.
Accepts a space and a flattened point. Returns a point with a structure
that matches the space. Raises ``NotImplementedError`` if the space is not
defined in ``gym.spaces``.
"""
if isinstance(space, Box):
return np.asarray(x, dtype=space.dtype).reshape(space.shape)
elif isinstance(space, Discrete):
return int(np.nonzero(x)[0][0])
elif isinstance(space, Tuple):
dims = [flatdim(s) for s in space.spaces]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
2021-07-29 12:42:48 -04:00
list_unflattened = [unflatten(s, flattened) for flattened, s in zip(list_flattened, space.spaces)]
return tuple(list_unflattened)
elif isinstance(space, Dict):
dims = [flatdim(s) for s in space.spaces.values()]
list_flattened = np.split(x, np.cumsum(dims)[:-1])
list_unflattened = [
2021-07-29 12:42:48 -04:00
(key, unflatten(s, flattened)) for flattened, (key, s) in zip(list_flattened, space.spaces.items())
]
return OrderedDict(list_unflattened)
elif isinstance(space, MultiBinary):
return np.asarray(x, dtype=space.dtype).reshape(space.shape)
elif isinstance(space, MultiDiscrete):
return np.asarray(x, dtype=space.dtype).reshape(space.shape)
else:
raise NotImplementedError
def flatten_space(space):
"""Flatten a space into a single ``Box``.
This is equivalent to ``flatten()``, but operates on the space itself. The
result always is a `Box` with flat boundaries. The box has exactly
``flatdim(space)`` dimensions. Flattening a sample of the original space
has the same effect as taking a sample of the flattenend space.
Raises ``NotImplementedError`` if the space is not defined in
``gym.spaces``.
Example::
>>> box = Box(0.0, 1.0, shape=(3, 4, 5))
>>> box
Box(3, 4, 5)
>>> flatten_space(box)
Box(60,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that flattens a discrete space::
>>> discrete = Discrete(5)
>>> flatten_space(discrete)
Box(5,)
>>> flatten(box, box.sample()) in flatten_space(box)
True
Example that recursively flattens a dict::
>>> space = Dict({"position": Discrete(2),
... "velocity": Box(0, 1, shape=(2, 2))})
>>> flatten_space(space)
Box(6,)
>>> flatten(space, space.sample()) in flatten_space(space)
True
"""
if isinstance(space, Box):
return Box(space.low.flatten(), space.high.flatten(), dtype=space.dtype)
if isinstance(space, Discrete):
2021-07-29 02:26:34 +02:00
return Box(low=0, high=1, shape=(space.n,), dtype=space.dtype)
if isinstance(space, Tuple):
space = [flatten_space(s) for s in space.spaces]
return Box(
low=np.concatenate([s.low for s in space]),
high=np.concatenate([s.high for s in space]),
2021-07-29 02:26:34 +02:00
dtype=np.result_type(*[s.dtype for s in space]),
)
if isinstance(space, Dict):
space = [flatten_space(s) for s in space.spaces.values()]
return Box(
low=np.concatenate([s.low for s in space]),
high=np.concatenate([s.high for s in space]),
2021-07-29 02:26:34 +02:00
dtype=np.result_type(*[s.dtype for s in space]),
)
if isinstance(space, MultiBinary):
2021-07-29 02:26:34 +02:00
return Box(low=0, high=1, shape=(space.n,), dtype=space.dtype)
if isinstance(space, MultiDiscrete):
2021-07-29 02:26:34 +02:00
return Box(low=np.zeros_like(space.nvec), high=space.nvec, dtype=space.dtype)
raise NotImplementedError