mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-26 16:27:11 +00:00
Seeding update (#2422)
* Ditch most of the seeding.py and replace np_random with the numpy default_rng. Let's see if tests pass * Updated a bunch of RNG calls from the RandomState API to Generator API * black; didn't expect that, did ya? * Undo a typo * blaaack * More typo fixes * Fixed setting/getting state in multidiscrete spaces * Fix typo, fix a test to work with the new sampling * Correctly (?) pass the randomly generated seed if np_random is called with None as seed * Convert the Discrete sample to a python int (as opposed to np.int64) * Remove some redundant imports * First version of the compatibility layer for old-style RNG. Mainly to trigger tests. * Removed redundant f-strings * Style fixes, removing unused imports * Try to make tests pass by removing atari from the dockerfile * Try to make tests pass by removing atari from the setup * Try to make tests pass by removing atari from the setup * Try to make tests pass by removing atari from the setup * First attempt at deprecating `env.seed` and supporting `env.reset(seed=seed)` instead. Tests should hopefully pass but throw up a million warnings. * black; didn't expect that, didya? * Rename the reset parameter in VecEnvs back to `seed` * Updated tests to use the new seeding method * Removed a bunch of old `seed` calls. Fixed a bug in AsyncVectorEnv * Stop Discrete envs from doing part of the setup (and using the randomness) in init (as opposed to reset) * Add explicit seed to wrappers reset * Remove an accidental return * Re-add some legacy functions with a warning. * Use deprecation instead of regular warnings for the newly deprecated methods/functions
This commit is contained in:
committed by
GitHub
parent
b84b69c872
commit
c364506710
@@ -1,3 +1,5 @@
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
import gym
|
||||
from gym import spaces
|
||||
@@ -60,7 +62,6 @@ class MemorizeDigits(gym.Env):
|
||||
use_random_colors = False
|
||||
|
||||
def __init__(self):
|
||||
self.seed()
|
||||
self.viewer = None
|
||||
self.observation_space = spaces.Box(
|
||||
0, 255, (FIELD_H, FIELD_W, 3), dtype=np.uint8
|
||||
@@ -74,22 +75,19 @@ class MemorizeDigits(gym.Env):
|
||||
]
|
||||
self.reset()
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def random_color(self):
|
||||
return np.array(
|
||||
[
|
||||
self.np_random.randint(low=0, high=255),
|
||||
self.np_random.randint(low=0, high=255),
|
||||
self.np_random.randint(low=0, high=255),
|
||||
self.np_random.integers(low=0, high=255),
|
||||
self.np_random.integers(low=0, high=255),
|
||||
self.np_random.integers(low=0, high=255),
|
||||
]
|
||||
).astype("uint8")
|
||||
|
||||
def reset(self):
|
||||
self.digit_x = self.np_random.randint(low=FIELD_W // 5, high=FIELD_W // 5 * 4)
|
||||
self.digit_y = self.np_random.randint(low=FIELD_H // 5, high=FIELD_H // 5 * 4)
|
||||
def reset(self, seed: Optional[int] = None):
|
||||
super().reset(seed=seed)
|
||||
self.digit_x = self.np_random.integers(low=FIELD_W // 5, high=FIELD_W // 5 * 4)
|
||||
self.digit_y = self.np_random.integers(low=FIELD_H // 5, high=FIELD_H // 5 * 4)
|
||||
self.color_bg = self.random_color() if self.use_random_colors else color_black
|
||||
self.step_n = 0
|
||||
while 1:
|
||||
@@ -111,8 +109,8 @@ class MemorizeDigits(gym.Env):
|
||||
else:
|
||||
if self.digit == action:
|
||||
reward = +1
|
||||
done = self.step_n > 20 and 0 == self.np_random.randint(low=0, high=5)
|
||||
self.digit = self.np_random.randint(low=0, high=10)
|
||||
done = self.step_n > 20 and 0 == self.np_random.integers(low=0, high=5)
|
||||
self.digit = self.np_random.integers(low=0, high=10)
|
||||
obs = np.zeros((FIELD_H, FIELD_W, 3), dtype=np.uint8)
|
||||
obs[:, :, :] = self.color_bg
|
||||
digit_img = np.zeros((6, 6, 3), dtype=np.uint8)
|
||||
|
Reference in New Issue
Block a user