mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-07-30 21:34:30 +00:00
75 lines
2.5 KiB
Markdown
75 lines
2.5 KiB
Markdown
---
|
|
title: Env
|
|
---
|
|
|
|
# Env
|
|
|
|
```{eval-rst}
|
|
.. autoclass:: gymnasium.Env
|
|
```
|
|
|
|
## Methods
|
|
```{eval-rst}
|
|
.. automethod:: gymnasium.Env.step
|
|
.. automethod:: gymnasium.Env.reset
|
|
.. automethod:: gymnasium.Env.render
|
|
.. automethod:: gymnasium.Env.close
|
|
```
|
|
|
|
## Attributes
|
|
```{eval-rst}
|
|
.. autoattribute:: gymnasium.Env.action_space
|
|
|
|
The Space object corresponding to valid actions, all valid actions should be contained with the space. For example, if the action space is of type `Discrete` and gives the value `Discrete(2)`, this means there are two valid discrete actions: `0` & `1`.
|
|
|
|
.. code::
|
|
|
|
>>> env.action_space
|
|
Discrete(2)
|
|
>>> env.observation_space
|
|
Box(-inf, inf, (4,), float32)
|
|
|
|
.. autoattribute:: gymnasium.Env.observation_space
|
|
|
|
The Space object corresponding to valid observations, all valid observations should be contained with the space. For example, if the observation space is of type :class:`Box` and the shape of the object is ``(4,)``, this denotes a valid observation will be an array of 4 numbers. We can check the box bounds as well with attributes.
|
|
|
|
.. code::
|
|
|
|
>>> env.observation_space.high
|
|
array([4.8000002e+00, inf, 4.1887903e-01, inf], dtype=float32)
|
|
>>> env.observation_space.low
|
|
array([-4.8000002e+00, -inf, -4.1887903e-01, -inf], dtype=float32)
|
|
|
|
.. autoattribute:: gymnasium.Env.metadata
|
|
|
|
The metadata of the environment containing rendering modes, rendering fps, etc
|
|
|
|
.. autoattribute:: gymnasium.Env.render_mode
|
|
|
|
The render mode of the environment determined at initialisation
|
|
|
|
.. autoattribute:: gymnasium.Env.spec
|
|
|
|
The :class:`EnvSpec` of the environment normally set during :py:meth:`gymnasium.make`
|
|
|
|
.. autoproperty:: gymnasium.Env.unwrapped
|
|
.. autoproperty:: gymnasium.Env.np_random
|
|
.. autoproperty:: gymnasium.Env.np_random_seed
|
|
```
|
|
|
|
## Implementing environments
|
|
|
|
```{eval-rst}
|
|
.. py:currentmodule:: gymnasium
|
|
|
|
When implementing an environment, the :meth:`Env.reset` and :meth:`Env.step` functions must be created to describe the dynamics of the environment. For more information, see the environment creation tutorial.
|
|
```
|
|
|
|
## Creating environments
|
|
|
|
```{eval-rst}
|
|
.. py:currentmodule:: gymnasium
|
|
|
|
To create an environment, gymnasium provides :meth:`make` to initialise the environment along with several important wrappers. Furthermore, gymnasium provides :meth:`make_vec` for creating vector environments and to view all the environment that can be created use :meth:`pprint_registry`.
|
|
```
|