Files
Gymnasium/tests/wrappers/test_numpy_to_torch.py

140 lines
4.5 KiB
Python

"""Test suite for NumPyToTorch wrapper."""
import pickle
from typing import NamedTuple
import numpy as np
import pytest
import gymnasium
torch = pytest.importorskip("torch")
from gymnasium.utils.env_checker import data_equivalence # noqa: E402
from gymnasium.wrappers.numpy_to_torch import ( # noqa: E402
NumpyToTorch,
numpy_to_torch,
torch_to_numpy,
)
from tests.testing_env import GenericTestEnv # noqa: E402
class ExampleNamedTuple(NamedTuple):
a: np.ndarray
b: np.ndarray
@pytest.mark.parametrize(
"value, expected_value",
[
(1.0, np.array(1.0, dtype=np.float32)),
(2, np.array(2, dtype=np.int64)),
((3.0, 4), (np.array(3.0, dtype=np.float32), np.array(4, dtype=np.int64))),
([3.0, 4], [np.array(3.0, dtype=np.float32), np.array(4, dtype=np.int64)]),
(
{
"a": 6.0,
"b": 7,
},
{"a": np.array(6.0, dtype=np.float32), "b": np.array(7, dtype=np.int64)},
),
(np.array(1.0, dtype=np.float32), np.array(1.0, dtype=np.float32)),
(np.array(1.0, dtype=np.uint8), np.array(1.0, dtype=np.uint8)),
(np.array([1, 2], dtype=np.int32), np.array([1, 2], dtype=np.int32)),
(
np.array([[1.0], [2.0]], dtype=np.int32),
np.array([[1.0], [2.0]], dtype=np.int32),
),
(
{
"a": (
1,
np.array(2.0, dtype=np.float32),
np.array([3, 4], dtype=np.int32),
),
"b": {"c": 5},
},
{
"a": (
np.array(1, dtype=np.int64),
np.array(2.0, dtype=np.float32),
np.array([3, 4], dtype=np.int32),
),
"b": {"c": np.array(5, dtype=np.int64)},
},
),
(
ExampleNamedTuple(
a=np.array([1, 2], dtype=np.int32),
b=np.array([1.0, 2.0], dtype=np.float32),
),
ExampleNamedTuple(
a=np.array([1, 2], dtype=np.int32),
b=np.array([1.0, 2.0], dtype=np.float32),
),
),
(None, None),
],
)
def test_roundtripping(value, expected_value):
"""We test numpy -> torch -> numpy as this is direction in the NumpyToTorch wrapper."""
roundtripped_value = torch_to_numpy(numpy_to_torch(value))
assert data_equivalence(roundtripped_value, expected_value)
def numpy_reset_func(self, seed=None, options=None):
"""A Numpy-based reset function."""
return np.array([1.0, 2.0, 3.0]), {"data": np.array([1, 2, 3])}
def numpy_step_func(self, action):
"""A Numpy-based step function."""
assert isinstance(action, np.ndarray), type(action)
return (
np.array([1, 2, 3]),
5.0,
True,
False,
{"data": np.array([1.0, 2.0])},
)
def test_numpy_to_torch():
"""Tests the ``TorchToNumpy`` wrapper."""
numpy_env = GenericTestEnv(reset_func=numpy_reset_func, step_func=numpy_step_func)
obs, info = numpy_env.reset()
assert isinstance(obs, np.ndarray)
assert isinstance(info, dict) and isinstance(info["data"], np.ndarray)
obs, reward, terminated, truncated, info = numpy_env.step(np.array([1, 2]))
assert isinstance(obs, np.ndarray)
assert isinstance(reward, float)
assert isinstance(terminated, bool) and isinstance(truncated, bool)
assert isinstance(info, dict) and isinstance(info["data"], np.ndarray)
# Check that the wrapped version is correct.
torch_env = NumpyToTorch(numpy_env)
# Check that the reset and step for torch environment are as expected
obs, info = torch_env.reset()
assert isinstance(obs, torch.Tensor)
assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor)
obs, reward, terminated, truncated, info = torch_env.step(torch.tensor([1, 2]))
assert isinstance(obs, torch.Tensor)
assert isinstance(reward, float)
assert isinstance(terminated, bool) and isinstance(truncated, bool)
assert isinstance(info, dict) and isinstance(info["data"], torch.Tensor)
# Check that the wrapped environment can render. This implicitly returns None and requires a
# None -> None conversion
torch_env.render()
# Test that the wrapped environment can be pickled
env = gymnasium.make("CartPole-v1", disable_env_checker=True)
wrapped_env = NumpyToTorch(env)
pkl = pickle.dumps(wrapped_env)
pickle.loads(pkl)