9.2 KiB
title
title |
---|
Wrapper |
Wrappers
:hidden:
wrappers/misc_wrappers
wrappers/action_wrappers
wrappers/observation_wrappers
wrappers/reward_wrappers
gymnasium.Wrapper
.. autoclass:: gymnasium.Wrapper
Methods
.. autofunction:: gymnasium.Wrapper.step
.. autofunction:: gymnasium.Wrapper.reset
.. autofunction:: gymnasium.Wrapper.close
Attributes
.. autoproperty:: gymnasium.Wrapper.action_space
.. autoproperty:: gymnasium.Wrapper.observation_space
.. autoproperty:: gymnasium.Wrapper.reward_range
.. autoproperty:: gymnasium.Wrapper.spec
.. autoproperty:: gymnasium.Wrapper.metadata
.. autoproperty:: gymnasium.Wrapper.np_random
.. autoproperty:: gymnasium.Wrapper.unwrapped
Gymnasium Wrappers
Gymnasium provides a number of commonly used wrappers listed below. More information can be found on the particular wrapper in the page on the wrapper type
.. py:currentmodule:: gymnasium.wrappers
.. list-table::
:header-rows: 1
* - Name
- Type
- Description
* - :class:`AtariPreprocessing`
- Misc Wrapper
- Implements the common preprocessing applied tp Atari environments
* - :class:`AutoResetWrapper`
- Misc Wrapper
- The wrapped environment will automatically reset when the terminated or truncated state is reached.
* - :class:`ClipAction`
- Action Wrapper
- Clip the continuous action to the valid bound specified by the environment's `action_space`
* - :class:`EnvCompatibility`
- Misc Wrapper
- Provides compatibility for environments written in the OpenAI Gym v0.21 API to look like Gymnasium environments
* - :class:`FilterObservation`
- Observation Wrapper
- Filters a dictionary observation spaces to only requested keys
* - :class:`FlattenObservation`
- Observation Wrapper
- An Observation wrapper that flattens the observation
* - :class:`FrameStack`
- Observation Wrapper
- AnObservation wrapper that stacks the observations in a rolling manner.
* - :class:`GrayScaleObservation`
- Observation Wrapper
- Convert the image observation from RGB to gray scale.
* - :class:`HumanRendering`
- Misc Wrapper
- Allows human like rendering for environments that support "rgb_array" rendering
* - :class:`NormalizeObservation`
- Observation Wrapper
- This wrapper will normalize observations s.t. each coordinate is centered with unit variance.
* - :class:`NormalizeReward`
- Reward Wrapper
- This wrapper will normalize immediate rewards s.t. their exponential moving average has a fixed variance.
* - :class:`OrderEnforcing`
- Misc Wrapper
- This will produce an error if `step` or `render` is called before `reset`
* - :class:`PixelObservationWrapper`
- Observation Wrapper
- Augment observations by pixel values obtained via `render` that can be added to or replaces the environments observation.
* - :class:`RecordEpisodeStatistics`
- Misc Wrapper
- This will keep track of cumulative rewards and episode lengths returning them at the end.
* - :class:`RecordVideo`
- Misc Wrapper
- This wrapper will record videos of rollouts.
* - :class:`RenderCollection`
- Misc Wrapper
- Enable list versions of render modes, i.e. "rgb_array_list" for "rgb_array" such that the rendering for each step are saved in a list until `render` is called.
* - :class:`RescaleAction`
- Action Wrapper
- Rescales the continuous action space of the environment to a range \[`min_action`, `max_action`], where `min_action` and `max_action` are numpy arrays or floats.
* - :class:`ResizeObservation`
- Observation Wrapper
- This wrapper works on environments with image observations (or more generally observations of shape AxBxC) and resizes the observation to the shape given by the tuple `shape`.
* - :class:`StepAPICompatibility`
- Misc Wrapper
- Modifies an environment step function from (old) done to the (new) termination / truncation API.
* - :class:`TimeAwareObservation`
- Observation Wrapper
- Augment the observation with current time step in the trajectory (by appending it to the observation).
* - :class:`TimeLimit`
- Misc Wrapper
- This wrapper will emit a truncated signal if the specified number of steps is exceeded in an episode.
* - :class:`TransformObservation`
- Observation Wrapper
- This wrapper will apply function to observations
* - :class:`TransformReward`
- Reward Wrapper
- This wrapper will apply function to rewards
* - :class:`VectorListInfo`
- Misc Wrapper
- This wrapper will convert the info of a vectorized environment from the `dict` format to a `list` of dictionaries where the i-th dictionary contains info of the i-th environment.
Implementing a custom wrapper
Sometimes you might need to implement a wrapper that does some more complicated modifications (e.g. modify the
reward based on data in info
or change the rendering behavior).
Such wrappers can be implemented by inheriting from Misc Wrapper.
- You can set a new action or observation space by defining
self.action_space
orself.observation_space
in__init__
, respectively - You can set new metadata and reward range by defining
self.metadata
andself.reward_range
in__init__
, respectively - You can override
step
,render
,close
etc. If you do this, you can access the environment that was passed to your wrapper (which still might be wrapped in some other wrapper) by accessing the attributeself.env
.
Let's also take a look at an example for this case. Most MuJoCo environments return a reward that consists
of different terms: For instance, there might be a term that rewards the agent for completing the task and one term that
penalizes large actions (i.e. energy usage). Usually, you can pass weight parameters for those terms during
initialization of the environment. However, Reacher does not allow you to do this! Nevertheless, all individual terms
of the reward are returned in info
, so let us build a wrapper for Reacher that allows us to weight those terms:
import gymnasium as gym
class ReacherRewardWrapper(gym.Wrapper):
def __init__(self, env, reward_dist_weight, reward_ctrl_weight):
super().__init__(env)
self.reward_dist_weight = reward_dist_weight
self.reward_ctrl_weight = reward_ctrl_weight
def step(self, action):
obs, _, terminated, truncated, info = self.env.step(action)
reward = (
self.reward_dist_weight * info["reward_dist"]
+ self.reward_ctrl_weight * info["reward_ctrl"]
)
return obs, reward, terminated, truncated, info
It is *not* sufficient to use a `RewardWrapper` in this case!