mirror of
https://github.com/Farama-Foundation/Gymnasium.git
synced 2025-08-01 14:10:30 +00:00
313 lines
9.9 KiB
Python
313 lines
9.9 KiB
Python
import re
|
|
from multiprocessing import TimeoutError
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from gymnasium.error import (
|
|
AlreadyPendingCallError,
|
|
ClosedEnvironmentError,
|
|
NoAsyncCallError,
|
|
)
|
|
from gymnasium.spaces import Box, Discrete, MultiDiscrete, Tuple
|
|
from gymnasium.vector.async_vector_env import AsyncVectorEnv
|
|
from tests.vector.utils import (
|
|
CustomSpace,
|
|
make_custom_space_env,
|
|
make_env,
|
|
make_slow_env,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_create_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
assert env.num_envs == 8
|
|
env.close()
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_reset_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
observations, infos = env.reset()
|
|
|
|
env.close()
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
assert isinstance(observations, np.ndarray)
|
|
assert observations.dtype == env.observation_space.dtype
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
try:
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
observations, infos = env.reset()
|
|
finally:
|
|
env.close()
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
assert isinstance(observations, np.ndarray)
|
|
assert observations.dtype == env.observation_space.dtype
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
assert observations.shape == env.observation_space.shape
|
|
assert isinstance(infos, dict)
|
|
assert all([isinstance(info, dict) for info in infos])
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
@pytest.mark.parametrize("use_single_action_space", [True, False])
|
|
def test_step_async_vector_env(shared_memory, use_single_action_space):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
observations = env.reset()
|
|
|
|
assert isinstance(env.single_action_space, Discrete)
|
|
assert isinstance(env.action_space, MultiDiscrete)
|
|
|
|
if use_single_action_space:
|
|
actions = [env.single_action_space.sample() for _ in range(8)]
|
|
else:
|
|
actions = env.action_space.sample()
|
|
observations, rewards, terminateds, truncateds, _ = env.step(actions)
|
|
|
|
env.close()
|
|
|
|
assert isinstance(env.observation_space, Box)
|
|
assert isinstance(observations, np.ndarray)
|
|
assert observations.dtype == env.observation_space.dtype
|
|
assert observations.shape == (8,) + env.single_observation_space.shape
|
|
assert observations.shape == env.observation_space.shape
|
|
|
|
assert isinstance(rewards, np.ndarray)
|
|
assert isinstance(rewards[0], (float, np.floating))
|
|
assert rewards.ndim == 1
|
|
assert rewards.size == 8
|
|
|
|
assert isinstance(terminateds, np.ndarray)
|
|
assert terminateds.dtype == np.bool_
|
|
assert terminateds.ndim == 1
|
|
assert terminateds.size == 8
|
|
|
|
assert isinstance(truncateds, np.ndarray)
|
|
assert truncateds.dtype == np.bool_
|
|
assert truncateds.ndim == 1
|
|
assert truncateds.size == 8
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_call_async_vector_env(shared_memory):
|
|
env_fns = [
|
|
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
|
|
]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
_ = env.reset()
|
|
images = env.call("render")
|
|
gravity = env.call("gravity")
|
|
|
|
env.close()
|
|
|
|
assert isinstance(images, tuple)
|
|
assert len(images) == 4
|
|
for i in range(4):
|
|
assert len(images[i]) == 1
|
|
assert isinstance(images[i][0], np.ndarray)
|
|
|
|
assert isinstance(gravity, tuple)
|
|
assert len(gravity) == 4
|
|
for i in range(4):
|
|
assert isinstance(gravity[i], float)
|
|
assert gravity[i] == 9.8
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_set_attr_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
|
|
gravity = env.get_attr("gravity")
|
|
assert gravity == (9.81, 3.72, 8.87, 1.62)
|
|
|
|
env.close()
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_copy_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
# TODO, these tests do nothing, understand the purpose of the tests and fix them
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True)
|
|
observations, infos = env.reset()
|
|
observations[0] = 0
|
|
|
|
env.close()
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_no_copy_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
|
|
# TODO, these tests do nothing, understand the purpose of the tests and fix them
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False)
|
|
observations, infos = env.reset()
|
|
observations[0] = 0
|
|
|
|
env.close()
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_reset_timeout_async_vector_env(shared_memory):
|
|
env_fns = [make_slow_env(0.3, i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(TimeoutError):
|
|
env.reset_async()
|
|
env.reset_wait(timeout=0.1)
|
|
|
|
env.close(terminate=True)
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_step_timeout_async_vector_env(shared_memory):
|
|
env_fns = [make_slow_env(0.0, i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(TimeoutError):
|
|
env.reset()
|
|
env.step_async(np.array([0.1, 0.1, 0.3, 0.1]))
|
|
observations, rewards, terminateds, truncateds, _ = env.step_wait(timeout=0.1)
|
|
env.close(terminate=True)
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_reset_out_of_order_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(
|
|
NoAsyncCallError,
|
|
match=re.escape(
|
|
"Calling `reset_wait` without any prior call to `reset_async`."
|
|
),
|
|
):
|
|
env.reset_wait()
|
|
|
|
env.close(terminate=True)
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(
|
|
AlreadyPendingCallError,
|
|
match=re.escape(
|
|
"Calling `reset_async` while waiting for a pending call to `step` to complete"
|
|
),
|
|
):
|
|
actions = env.action_space.sample()
|
|
env.reset()
|
|
env.step_async(actions)
|
|
env.reset_async()
|
|
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match=re.escape(
|
|
"Calling `close` while waiting for a pending call to `step` to complete."
|
|
),
|
|
):
|
|
env.close(terminate=True)
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_step_out_of_order_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(
|
|
NoAsyncCallError,
|
|
match=re.escape("Calling `step_wait` without any prior call to `step_async`."),
|
|
):
|
|
env.action_space.sample()
|
|
env.reset()
|
|
env.step_wait()
|
|
|
|
env.close(terminate=True)
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
with pytest.raises(
|
|
AlreadyPendingCallError,
|
|
match=re.escape(
|
|
"Calling `step_async` while waiting for a pending call to `reset` to complete"
|
|
),
|
|
):
|
|
actions = env.action_space.sample()
|
|
env.reset_async()
|
|
env.step_async(actions)
|
|
|
|
with pytest.warns(
|
|
UserWarning,
|
|
match=re.escape(
|
|
"Calling `close` while waiting for a pending call to `reset` to complete."
|
|
),
|
|
):
|
|
env.close(terminate=True)
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_already_closed_async_vector_env(shared_memory):
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
|
|
with pytest.raises(ClosedEnvironmentError):
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
env.close()
|
|
env.reset()
|
|
|
|
|
|
@pytest.mark.parametrize("shared_memory", [True, False])
|
|
def test_check_spaces_async_vector_env(shared_memory):
|
|
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
|
|
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
|
|
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
|
|
env_fns[1] = make_env("FrozenLake-v1", 1)
|
|
with pytest.raises(RuntimeError):
|
|
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
|
|
env.close(terminate=True)
|
|
|
|
|
|
def test_custom_space_async_vector_env():
|
|
env_fns = [make_custom_space_env(i) for i in range(4)]
|
|
|
|
env = AsyncVectorEnv(env_fns, shared_memory=False)
|
|
reset_observations, reset_infos = env.reset()
|
|
|
|
assert isinstance(env.single_action_space, CustomSpace)
|
|
assert isinstance(env.action_space, Tuple)
|
|
|
|
actions = ("action-2", "action-3", "action-5", "action-7")
|
|
step_observations, rewards, terminateds, truncateds, _ = env.step(actions)
|
|
|
|
env.close()
|
|
|
|
assert isinstance(env.single_observation_space, CustomSpace)
|
|
assert isinstance(env.observation_space, Tuple)
|
|
|
|
assert isinstance(reset_observations, tuple)
|
|
assert reset_observations == ("reset", "reset", "reset", "reset")
|
|
|
|
assert isinstance(step_observations, tuple)
|
|
assert step_observations == (
|
|
"step(action-2)",
|
|
"step(action-3)",
|
|
"step(action-5)",
|
|
"step(action-7)",
|
|
)
|
|
|
|
|
|
def test_custom_space_async_vector_env_shared_memory():
|
|
env_fns = [make_custom_space_env(i) for i in range(4)]
|
|
with pytest.raises(ValueError):
|
|
env = AsyncVectorEnv(env_fns, shared_memory=True)
|
|
env.close(terminate=True)
|