Files
Gymnasium/tests/vector/test_async_vector_env.py

313 lines
9.9 KiB
Python
Raw Normal View History

import re
from multiprocessing import TimeoutError
import numpy as np
import pytest
2022-09-08 10:11:31 +01:00
from gymnasium.error import (
AlreadyPendingCallError,
ClosedEnvironmentError,
NoAsyncCallError,
)
2022-09-08 10:10:07 +01:00
from gymnasium.spaces import Box, Discrete, MultiDiscrete, Tuple
from gymnasium.vector.async_vector_env import AsyncVectorEnv
from tests.vector.utils import (
2021-07-29 02:26:34 +02:00
CustomSpace,
make_custom_space_env,
2021-07-29 02:26:34 +02:00
make_env,
make_slow_env,
)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_create_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
assert env.num_envs == 8
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations, infos = env.reset()
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
try:
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations, infos = env.reset()
finally:
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
New `info` API for vectorized environments #2657 (#2773) * WIP refactor info API sync vector. * Add missing untracked file. * Add info strategy to reset_wait. * Add interface and docstring. * info with strategy pattern on async vector env. * Add default to async vecenv. * episode statistics for asyncvecnev. * Add tests info strategy format. * Add info strategy to reset_wait. * refactor and cleanup. * Code cleanup. Add tests. * Add tests for video recording with new info format. * fix test case. * fix camelcase. * rename enum. * update tests, docstrings, cleanup. * Changes brax strategy to numpy. add_strategy method in StrategyFactory. Add tests. * fix docstring and logging format. * Set Brax info format as default. Remove classic info format. Update tests. * breaking the wrong loop. * WIP: wrapper. * Add wrapper for brax to classic info. * WIP: wrapper with nested RecordEpisodeStatistic. * Add tests. Refactor docstrings. Cleanup. * cleanup. * patch conflicts. * rebase and conflicts. * new pre-commit conventions. * docstring. * renaming. * incorporate info_processor in vecEnv. * renaming. Create info dict only if needed. * remove all brax references. update docstring. Update duplicate test. * reviews. * pre-commit. * reviews. * docstring. * cleanup blank lines. * add support for numpy dtypes. * docstring fix. * formatting. * naming. * assert correct info from wrappers chaining. Test correct wrappers chaining. naming. * simplify episode_statistics. * change args orer. * update tests. * wip: refactor episode_statistics. * Add test for add_vecore_episode_statistics.
2022-05-24 16:36:35 +02:00
assert isinstance(infos, dict)
assert all([isinstance(info, dict) for info in infos])
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_async_vector_env(shared_memory, use_single_action_space):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, terminateds, truncateds, _ = env.step(actions)
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(terminateds, np.ndarray)
assert terminateds.dtype == np.bool_
assert terminateds.ndim == 1
assert terminateds.size == 8
assert isinstance(truncateds, np.ndarray)
assert truncateds.dtype == np.bool_
assert truncateds.ndim == 1
assert truncateds.size == 8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_call_async_vector_env(shared_memory):
env_fns = [
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
_ = env.reset()
images = env.call("render")
gravity = env.call("gravity")
env.close()
assert isinstance(images, tuple)
assert len(images) == 4
for i in range(4):
Render API (#2671) * add pygame GUI for frozen_lake.py env * add new line at EOF * pre-commit reformat * improve graphics * new images and dynamic window size * darker tile borders and fix ICC profile * pre-commit hook * adjust elf and stool size * Update frozen_lake.py * reformat * fix #2600 * #2600 * add rgb_array support * reformat * test render api change on FrozenLake * add render support for reset on frozenlake * add clock on pygame render * new render api for blackjack * new render api for cliffwalking * new render api for Env class * update reset method, lunar and Env * fix wrapper * fix reset lunar * new render api for box2d envs * new render api for mujoco envs * fix bug * new render api for classic control envs * fix tests * add render_mode None for CartPole * new render api for test fake envs * pre-commit hook * fix FrozenLake * fix FrozenLake * more render_mode to super - frozenlake * remove kwargs from frozen_lake new * pre-commit hook * add deprecated render method * add backwards compatibility * fix test * add _render * move pygame.init() (avoid pygame dependency on init) * fix pygame dependencies * remove collect_render() maintain multi-behaviours .render() * add type hints * fix renderer * don't call .render() with None * improve docstring * add single_rgb_array to all envs * remove None from metadata["render_modes"] * add type hints to test_env_checkers * fix lint * add comments to renderer * add comments to single_depth_array and single_state_pixels * reformat * add deprecation warnings and env.render_mode declaration * fix lint * reformat * fix tests * add docs * fix car racing determinism * remove warning test envs, customizable modes on renderer * remove commments and add todo for env_checker * fix car racing * replace render mode check with assert * update new mujoco * reformat * reformat * change metaclass definition * fix tests * implement mark suggestions (test, docs, sets) * check_render Co-authored-by: J K Terry <jkterry0@gmail.com>
2022-06-08 00:20:56 +02:00
assert len(images[i]) == 1
assert isinstance(images[i][0], np.ndarray)
assert isinstance(gravity, tuple)
assert len(gravity) == 4
for i in range(4):
assert isinstance(gravity[i], float)
assert gravity[i] == 9.8
@pytest.mark.parametrize("shared_memory", [True, False])
def test_set_attr_async_vector_env(shared_memory):
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
gravity = env.get_attr("gravity")
assert gravity == (9.81, 3.72, 8.87, 1.62)
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_copy_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# TODO, these tests do nothing, understand the purpose of the tests and fix them
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=True)
observations, infos = env.reset()
observations[0] = 0
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_no_copy_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# TODO, these tests do nothing, understand the purpose of the tests and fix them
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory, copy=False)
observations, infos = env.reset()
observations[0] = 0
env.close()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_timeout_async_vector_env(shared_memory):
env_fns = [make_slow_env(0.3, i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(TimeoutError):
env.reset_async()
env.reset_wait(timeout=0.1)
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_timeout_async_vector_env(shared_memory):
2021-07-29 02:26:34 +02:00
env_fns = [make_slow_env(0.0, i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(TimeoutError):
env.reset()
env.step_async(np.array([0.1, 0.1, 0.3, 0.1]))
observations, rewards, terminateds, truncateds, _ = env.step_wait(timeout=0.1)
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_reset_out_of_order_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(
NoAsyncCallError,
match=re.escape(
"Calling `reset_wait` without any prior call to `reset_async`."
),
):
env.reset_wait()
env.close(terminate=True)
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(
AlreadyPendingCallError,
match=re.escape(
"Calling `reset_async` while waiting for a pending call to `step` to complete"
),
):
actions = env.action_space.sample()
env.reset()
env.step_async(actions)
env.reset_async()
with pytest.warns(
UserWarning,
match=re.escape(
"Calling `close` while waiting for a pending call to `step` to complete."
),
):
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_step_out_of_order_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(
NoAsyncCallError,
match=re.escape("Calling `step_wait` without any prior call to `step_async`."),
):
env.action_space.sample()
env.reset()
env.step_wait()
env.close(terminate=True)
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
with pytest.raises(
AlreadyPendingCallError,
match=re.escape(
"Calling `step_async` while waiting for a pending call to `reset` to complete"
),
):
actions = env.action_space.sample()
env.reset_async()
env.step_async(actions)
with pytest.warns(
UserWarning,
match=re.escape(
"Calling `close` while waiting for a pending call to `reset` to complete."
),
):
env.close(terminate=True)
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_already_closed_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
with pytest.raises(ClosedEnvironmentError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close()
env.reset()
2021-07-29 02:26:34 +02:00
@pytest.mark.parametrize("shared_memory", [True, False])
def test_check_spaces_async_vector_env(shared_memory):
2022-01-10 23:42:26 -05:00
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = AsyncVectorEnv(env_fns, shared_memory=shared_memory)
env.close(terminate=True)
def test_custom_space_async_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
env = AsyncVectorEnv(env_fns, shared_memory=False)
reset_observations, reset_infos = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, terminateds, truncateds, _ = env.step(actions)
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
2021-07-29 02:26:34 +02:00
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
2021-07-29 02:26:34 +02:00
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_custom_space_async_vector_env_shared_memory():
env_fns = [make_custom_space_env(i) for i in range(4)]
with pytest.raises(ValueError):
env = AsyncVectorEnv(env_fns, shared_memory=True)
env.close(terminate=True)