Files
Gymnasium/gym/envs/mujoco/mujoco_env.py
Omar Younis de9eed541b Remove old Render API (#3027)
* init

* add .gitignore

* fix .gitignore

* remove internal backend use

* fix VideoRecorder test

* fix .gitignore

* fix order enforcing tests

* adapt play.py

* reformat

* fix .gitignore

* add type to DummyPlayEnv
2022-08-22 11:21:08 -04:00

464 lines
14 KiB
Python

from functools import partial
from os import path
from typing import Optional, Union
import numpy as np
import gym
from gym import error, logger, spaces
from gym.spaces import Space
from gym.utils.renderer import Renderer
MUJOCO_PY_NOT_INSTALLED = False
MUJOCO_NOT_INSTALLED = False
try:
import mujoco_py
except ImportError as e:
MUJOCO_PY_IMPORT_ERROR = e
MUJOCO_PY_NOT_INSTALLED = True
try:
import mujoco
except ImportError as e:
MUJOCO_IMPORT_ERROR = e
MUJOCO_NOT_INSTALLED = True
DEFAULT_SIZE = 480
class BaseMujocoEnv(gym.Env):
"""Superclass for all MuJoCo environments."""
def __init__(
self,
model_path,
frame_skip,
observation_space: Space,
render_mode: Optional[str] = None,
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
if model_path.startswith("/"):
self.fullpath = model_path
else:
self.fullpath = path.join(path.dirname(__file__), "assets", model_path)
if not path.exists(self.fullpath):
raise OSError(f"File {self.fullpath} does not exist")
self._initialize_simulation()
self.init_qpos = self.data.qpos.ravel().copy()
self.init_qvel = self.data.qvel.ravel().copy()
self._viewers = {}
self.frame_skip = frame_skip
self.viewer = None
assert self.metadata["render_modes"] == [
"human",
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
]
assert (
int(np.round(1.0 / self.dt)) == self.metadata["render_fps"]
), f'Expected value: {int(np.round(1.0 / self.dt))}, Actual value: {self.metadata["render_fps"]}'
self.observation_space = observation_space
self._set_action_space()
self.render_mode = render_mode
render_frame = partial(
self._render,
width=width,
height=height,
camera_name=camera_name,
camera_id=camera_id,
)
self.renderer = Renderer(self.render_mode, render_frame)
def _set_action_space(self):
bounds = self.model.actuator_ctrlrange.copy().astype(np.float32)
low, high = bounds.T
self.action_space = spaces.Box(low=low, high=high, dtype=np.float32)
return self.action_space
# methods to override:
# ----------------------------
def reset_model(self):
"""
Reset the robot degrees of freedom (qpos and qvel).
Implement this in each subclass.
"""
raise NotImplementedError
def viewer_setup(self):
"""
This method is called when the viewer is initialized.
Optionally implement this method, if you need to tinker with camera position and so forth.
"""
def _initialize_simulation(self):
"""
Initialize MuJoCo simulation data structures mjModel and mjData.
"""
raise NotImplementedError
def _reset_simulation(self):
"""
Reset MuJoCo simulation data structures, mjModel and mjData.
"""
raise NotImplementedError
def _step_mujoco_simulation(self, ctrl, n_frames):
"""
Step over the MuJoCo simulation.
"""
raise NotImplementedError
def _render(
self,
mode: str = "human",
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
"""
Render a frame from the MuJoCo simulation as specified by the render_mode.
"""
raise NotImplementedError
# -----------------------------
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self._reset_simulation()
ob = self.reset_model()
self.renderer.reset()
self.renderer.render_step()
if not return_info:
return ob
else:
return ob, {}
def set_state(self, qpos, qvel):
"""
Set the joints position qpos and velocity qvel of the model. Override this method depending on the MuJoCo bindings used.
"""
assert qpos.shape == (self.model.nq,) and qvel.shape == (self.model.nv,)
@property
def dt(self):
return self.model.opt.timestep * self.frame_skip
def do_simulation(self, ctrl, n_frames):
"""
Step the simulation n number of frames and applying a control action.
"""
# Check control input is contained in the action space
if np.array(ctrl).shape != self.action_space.shape:
raise ValueError("Action dimension mismatch")
self._step_mujoco_simulation(ctrl, n_frames)
def render(self):
return self.renderer.get_renders()
def close(self):
if self.viewer is not None:
self.viewer = None
self._viewers = {}
def get_body_com(self, body_name):
"""Return the cartesian position of a body frame"""
raise NotImplementedError
def state_vector(self):
"""Return the position and velocity joint states of the model"""
return np.concatenate([self.data.qpos.flat, self.data.qvel.flat])
class MuJocoPyEnv(BaseMujocoEnv):
def __init__(
self,
model_path: str,
frame_skip: int,
observation_space: Space,
render_mode: Optional[str] = None,
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
if MUJOCO_PY_NOT_INSTALLED:
raise error.DependencyNotInstalled(
f"{MUJOCO_PY_IMPORT_ERROR}. (HINT: you need to install mujoco_py, and also perform the setup instructions here: https://github.com/openai/mujoco-py/.)"
)
logger.warn(
"This version of the mujoco environments depends "
"on the mujoco-py bindings, which are no longer maintained "
"and may stop working. Please upgrade to the v4 versions of "
"the environments (which depend on the mujoco python bindings instead), unless "
"you are trying to precisely replicate previous works)."
)
super().__init__(
model_path,
frame_skip,
observation_space,
render_mode,
width,
height,
camera_id,
camera_name,
)
def _initialize_simulation(self):
self.model = mujoco_py.load_model_from_path(self.fullpath)
self.sim = mujoco_py.MjSim(self.model)
self.data = self.sim.data
def _reset_simulation(self):
self.sim.reset()
def set_state(self, qpos, qvel):
super().set_state(qpos, qvel)
state = self.sim.get_state()
state = mujoco_py.MjSimState(state.time, qpos, qvel, state.act, state.udd_state)
self.sim.set_state(state)
self.sim.forward()
def _step_mujoco_simulation(self, ctrl, n_frames):
self.sim.data.ctrl[:] = ctrl
for _ in range(n_frames):
self.sim.step()
def _render(
self,
mode: str = "human",
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
assert mode in self.metadata["render_modes"]
if mode in {
"rgb_array",
"single_rgb_array",
"depth_array",
"single_depth_array",
}:
if camera_id is not None and camera_name is not None:
raise ValueError(
"Both `camera_id` and `camera_name` cannot be"
" specified at the same time."
)
no_camera_specified = camera_name is None and camera_id is None
if no_camera_specified:
camera_name = "track"
if camera_id is None and camera_name in self.model._camera_name2id:
if camera_name in self.model._camera_name2id:
camera_id = self.model.camera_name2id(camera_name)
self._get_viewer(mode).render(width, height, camera_id=camera_id)
if mode in {"rgb_array", "single_rgb_array"}:
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
# original image is upside-down, so flip it
return data[::-1, :, :]
elif mode in {"depth_array", "single_depth_array"}:
self._get_viewer(mode).render(width, height)
# Extract depth part of the read_pixels() tuple
data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1]
# original image is upside-down, so flip it
return data[::-1, :]
elif mode == "human":
self._get_viewer(mode).render()
def _get_viewer(
self, mode
) -> Union["mujoco_py.MjViewer", "mujoco_py.MjRenderContextOffscreen"]:
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == "human":
self.viewer = mujoco_py.MjViewer(self.sim)
elif mode in {
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
}:
self.viewer = mujoco_py.MjRenderContextOffscreen(self.sim, -1)
else:
raise AttributeError(
f"Unknown mode: {mode}, expected modes: {self.metadata['render_modes']}"
)
self.viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
def get_body_com(self, body_name):
return self.data.get_body_xpos(body_name)
class MujocoEnv(BaseMujocoEnv):
"""Superclass for MuJoCo environments."""
def __init__(
self,
model_path,
frame_skip,
observation_space: Space,
render_mode: Optional[str] = None,
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
if MUJOCO_NOT_INSTALLED:
raise error.DependencyNotInstalled(
f"{MUJOCO_IMPORT_ERROR}. (HINT: you need to install mujoco)"
)
super().__init__(
model_path,
frame_skip,
observation_space,
render_mode,
width,
height,
camera_id,
camera_name,
)
def _initialize_simulation(self):
self.model = mujoco.MjModel.from_xml_path(self.fullpath)
self.data = mujoco.MjData(self.model)
def _reset_simulation(self):
mujoco.mj_resetData(self.model, self.data)
def set_state(self, qpos, qvel):
super().set_state(qpos, qvel)
self.data.qpos[:] = np.copy(qpos)
self.data.qvel[:] = np.copy(qvel)
if self.model.na == 0:
self.data.act[:] = None
mujoco.mj_forward(self.model, self.data)
def _step_mujoco_simulation(self, ctrl, n_frames):
self.data.ctrl[:] = ctrl
mujoco.mj_step(self.model, self.data, nstep=self.frame_skip)
# As of MuJoCo 2.0, force-related quantities like cacc are not computed
# unless there's a force sensor in the model.
# See https://github.com/openai/gym/issues/1541
mujoco.mj_rnePostConstraint(self.model, self.data)
def _render(
self,
mode: str = "human",
width: int = DEFAULT_SIZE,
height: int = DEFAULT_SIZE,
camera_id: Optional[int] = None,
camera_name: Optional[str] = None,
):
assert mode in self.metadata["render_modes"]
if mode in {
"rgb_array",
"single_rgb_array",
"depth_array",
"single_depth_array",
}:
if camera_id is not None and camera_name is not None:
raise ValueError(
"Both `camera_id` and `camera_name` cannot be"
" specified at the same time."
)
no_camera_specified = camera_name is None and camera_id is None
if no_camera_specified:
camera_name = "track"
if camera_id is None:
camera_id = mujoco.mj_name2id(
self.model,
mujoco.mjtObj.mjOBJ_CAMERA,
camera_name,
)
self._get_viewer(mode).render(width, height, camera_id=camera_id)
if mode in {"rgb_array", "single_rgb_array"}:
data = self._get_viewer(mode).read_pixels(width, height, depth=False)
# original image is upside-down, so flip it
return data[::-1, :, :]
elif mode in {"depth_array", "single_depth_array"}:
self._get_viewer(mode).render(width, height)
# Extract depth part of the read_pixels() tuple
data = self._get_viewer(mode).read_pixels(width, height, depth=True)[1]
# original image is upside-down, so flip it
return data[::-1, :]
elif mode == "human":
self._get_viewer(mode).render()
def close(self):
if self.viewer is not None:
self.viewer.close()
super().close()
def _get_viewer(
self, mode, width=DEFAULT_SIZE, height=DEFAULT_SIZE
) -> Union["gym.envs.mujoco.Viewer", "gym.envs.mujoco.RenderContextOffscreen"]:
self.viewer = self._viewers.get(mode)
if self.viewer is None:
if mode == "human":
from gym.envs.mujoco import Viewer
self.viewer = Viewer(self.model, self.data)
elif mode in {
"rgb_array",
"depth_array",
"single_rgb_array",
"single_depth_array",
}:
from gym.envs.mujoco import RenderContextOffscreen
self.viewer = RenderContextOffscreen(
width, height, self.model, self.data
)
else:
raise AttributeError(
f"Unexpected mode: {mode}, expected modes: {self.metadata['render_modes']}"
)
self.viewer_setup()
self._viewers[mode] = self.viewer
return self.viewer
def get_body_com(self, body_name):
return self.data.body(body_name).xpos