Files
Gymnasium/gym/envs/mujoco/inverted_pendulum.py
2017-02-22 17:24:27 -08:00

31 lines
1.0 KiB
Python

import numpy as np
from gym import utils
from gym.envs.mujoco import mujoco_env
class InvertedPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
utils.EzPickle.__init__(self)
mujoco_env.MujocoEnv.__init__(self, 'inverted_pendulum.xml', 2)
def _step(self, a):
reward = 1.0
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2)
done = not notdone
return ob, reward, done, {}
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.01, high=0.01)
qvel = self.init_qvel + self.np_random.uniform(size=self.model.nv, low=-0.01, high=0.01)
self.set_state(qpos, qvel)
return self._get_obs()
def _get_obs(self):
return np.concatenate([self.model.data.qpos, self.model.data.qvel]).ravel()
def viewer_setup(self):
v = self.viewer
v.cam.trackbodyid = 0
v.cam.distance = v.model.stat.extent