add x, y axis name
@@ -96,6 +96,8 @@ def plot(env_name, bc_log, gail_log, stochastic):
|
||||
plt.plot(CONFIG['traj_limitation'], upper_bound)
|
||||
plt.plot(CONFIG['traj_limitation'], bc_avg_ret)
|
||||
plt.plot(CONFIG['traj_limitation'], gail_avg_ret)
|
||||
plt.xlabel('Number of expert trajectories')
|
||||
plt.ylabel('Accumulated reward')
|
||||
plt.title('{} unnormalized scores'.format(env_name))
|
||||
plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
|
||||
plt.grid(b=True, which='major', color='gray', linestyle='--')
|
||||
@@ -111,6 +113,8 @@ def plot(env_name, bc_log, gail_log, stochastic):
|
||||
plt.plot(CONFIG['traj_limitation'], np.ones(len(CONFIG['traj_limitation'])))
|
||||
plt.plot(CONFIG['traj_limitation'], bc_normalized_ret)
|
||||
plt.plot(CONFIG['traj_limitation'], gail_normalized_ret)
|
||||
plt.xlabel('Number of expert trajectories')
|
||||
plt.ylabel('Normalized performance')
|
||||
plt.title('{} normalized scores'.format(env_name))
|
||||
plt.legend(['expert', 'bc-imitator', 'gail-imitator'], loc='lower right')
|
||||
plt.grid(b=True, which='major', color='gray', linestyle='--')
|
||||
|
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 42 KiB |
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 38 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 40 KiB |
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 38 KiB After Width: | Height: | Size: 46 KiB |