update REAMD.md
.
This commit is contained in:
@@ -3,6 +3,16 @@
|
||||
- Original paper: https://arxiv.org/abs/1707.06347
|
||||
- Baselines blog post: https://blog.openai.com/openai-baselines-ppo/
|
||||
|
||||
## Examples
|
||||
- `python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4` runs the algorithm for 40M frames = 10M timesteps on an Atari Pong. See help (`-h`) for more options.
|
||||
- `python -m baselines.run --alg=ppo2 --env=Ant-v2 --num_timesteps=1e6` runs the algorithm for 1M frames on a Mujoco Ant environment.
|
||||
- also refer to the repo-wide [README.md](../../README.md#training-models)
|
||||
|
||||
### RNN networks
|
||||
- `python -m baselines.run --alg=ppo2 --env=PongNoFrameskip-v4 --network=ppo_cnn_lstm` runs on an Atari Pong with
|
||||
`ppo_cnn_lstm` network.
|
||||
- `python -m baselines.run --alg=ppo2 --env=Ant-v2 --num_timesteps=1e6 --network=ppo_lstm --value_network=copy`
|
||||
runs on a Mujoco Ant environment with `ppo_lstm` network whose value and policy networks are separated, but have
|
||||
same structure.
|
||||
|
||||
## See Also
|
||||
- refer to the repo-wide [README.md](../../README.md#training-models)
|
||||
|
Reference in New Issue
Block a user